Currently displaying 1 – 14 of 14

Showing per page

Order by Relevance | Title | Year of publication

Ideals of extendable and liftable operators.

Pawel Domanski — 2003

RACSAM

Se introducen los ideales de operadores que admiten extensión o levantamiento y se presenta una nueva aproximación al estudio de la escisión de sucesiones exactas cortas de espacios de Banach. Se considera la maximalidad de estos ideales y se investiga si son cerrados respecto de los límites puntuales acotados. Se resumen algunos ejemplos y se clarifica el papel de los espacios L y L.

Classical PLS-spaces: spaces of distributions, real analytic functions and their relatives

Paweł Domański — 2004

Banach Center Publications

This paper is an extended version of an invited talk presented during the Orlicz Centenary Conference (Poznań, 2003). It contains a brief survey of applications to classical problems of analysis of the theory of the so-called PLS-spaces (in particular, spaces of distributions and real analytic functions). Sequential representations of the spaces and the theory of the functor Proj¹ are applied to questions like solvability of linear partial differential equations, existence of a solution depending...

Köthe coechelon spaces as locally convex algebras

José BonetPaweł Domański — 2010

Studia Mathematica

We study those Köthe coechelon sequence spaces k p ( V ) , 1 ≤ p ≤ ∞ or p = 0, which are locally convex (Riesz) algebras for pointwise multiplication. We characterize in terms of the matrix V = (vₙ)ₙ when an algebra k p ( V ) is unital, locally m-convex, a -algebra, has a continuous (quasi)-inverse, all entire functions act on it or some transcendental entire functions act on it. It is proved that all multiplicative functionals are continuous and a precise description of all regular and all degenerate maximal ideals...

Algebra of multipliers on the space of real analytic functions of one variable

Paweł DomańskiMichael Langenbruch — 2012

Studia Mathematica

We consider the topological algebra of (Taylor) multipliers on spaces of real analytic functions of one variable, i.e., maps for which monomials are eigenvectors. We describe multiplicative functionals and algebra homomorphisms on that algebra as well as idempotents in it. We show that it is never a Q-algebra and never locally m-convex. In particular, we show that Taylor multiplier sequences cease to be so after most permutations.

Sets of interpolation and sampling for weighted Banach spaces of holomorphic functions

Paweł DomańskiMikael Lindström — 2002

Annales Polonici Mathematici

We give an elementary approach which allows us to evaluate Seip's conditions characterizing interpolating and sampling sequences in weighted Bergman spaces of infinite order for a wide class of weights depending on the distance to the boundary of the domain. Our results also give some information on cases not covered by Seip's theory. Moreover, we obtain new criteria for weights to be essential.

Page 1

Download Results (CSV)