Moderate deviations for functional U-processes
We derive necessary and sufficient conditions for a sum of i.i.d. random variables – where , but – to satisfy a moderate deviations principle. Moreover we show that this equivalence is a typical moderate deviations phenomenon. It is not true in a large deviations regime.
Functionals of spatial point process often satisfy a weak spatial dependence condition known as . In this paper we prove process level moderate deviation principles (MDP) for such functionals, which is a level-3 result for empirical point fields as well as a level-2 result for empirical point measures. The level-3 rate function coincides with the so-called specific information. We show that the general result can be applied to prove MDPs for various particular functionals, including random sequential...
We derive necessary and sufficient conditions for a sum of i.i.d. random variables – where , but – to satisfy a moderate deviations principle. Moreover we show that this equivalence is a typical moderate deviations phenomenon. It is not true in a large deviations regime.
Page 1