Currently displaying 1 – 20 of 22

Showing per page

Order by Relevance | Title | Year of publication

Linear rescaling of the stochastic process

Petr Lachout — 1992

Commentationes Mathematicae Universitatis Carolinae

Discussion on the limits in distribution of processes Y under joint rescaling of space and time is presented in this paper. The results due to Lamperti (1962), Weissman (1975), Hudson Mason (1982) and Laha Rohatgi (1982) are improved here.

Stability of stochastic optimization problems - nonmeasurable case

Petr Lachout — 2008

Kybernetika

This paper deals with stability of stochastic optimization problems in a general setting. Objective function is defined on a metric space and depends on a probability measure which is unknown, but, estimated from empirical observations. We try to derive stability results without precise knowledge of problem structure and without measurability assumption. Moreover, ε -optimal solutions are considered. The setup is illustrated on consistency of a ε - M -estimator in linear regression model.

Approximative solutions of stochastic optimization problems

Petr Lachout — 2010

Kybernetika

The aim of this paper is to present some ideas how to relax the notion of the optimal solution of the stochastic optimization problem. In the deterministic case, ε -minimal solutions and level-minimal solutions are considered as desired relaxations. We call them approximative solutions and we introduce some possibilities how to combine them with randomness. Relations among random versions of approximative solutions and their consistency are presented in this paper. No measurability is assumed, therefore,...

On random processes as an implicit solution of equations

Petr Lachout — 2017

Kybernetika

Random processes with convenient properties are often employed to model observed data, particularly, coming from economy and finance. We will focus our interest in random processes given implicitly as a solution of a functional equation. For example, random processes AR, ARMA, ARCH, GARCH are belonging in this wide class. Their common feature can be expressed by requirement that stated random process together with incoming innovations must fulfill a functional equation. Functional dependence is...

On continuous convergence and epi-convergence of random functions. Part I: Theory and relations

Silvia VogelPetr Lachout — 2003

Kybernetika

Continuous convergence and epi-convergence of sequences of random functions are crucial assumptions if mathematical programming problems are approximated on the basis of estimates or via sampling. The paper investigates “almost surely” and “in probability” versions of these convergence notions in more detail. Part I of the paper presents definitions and theoretical results and Part II is focused on sufficient conditions which apply to many models for statistical estimation and stochastic optimization....

On continuous convergence and epi-convergence of random functions. Part II: Sufficient conditions and applications

Silvia VogelPetr Lachout — 2003

Kybernetika

Part II of the paper aims at providing conditions which may serve as a bridge between existing stability assertions and asymptotic results in probability theory and statistics. Special emphasis is put on functions that are expectations with respect to random probability measures. Discontinuous integrands are also taken into account. The results are illustrated applying them to functions that represent probabilities.

Page 1 Next

Download Results (CSV)