From triangulated categories to cluster algebras II
We study the Zariski closures of orbits of representations of quivers of type , ou . With the help of Lusztig’s canonical base, we characterize the rationally smooth orbit closures and prove in particular that orbit closures are smooth if and only if they are rationally smooth.
Two geometric interpretations of the bar automorphism in the positive part of a quantized enveloping algebra are given. The first is in terms of numbers of rational points over finite fields of quiver analogues of orbital varieties; the second is in terms of a duality of constructible functions provided by preprojective varieties of quivers.
Page 1