The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 7 of 7

Showing per page

Order by Relevance | Title | Year of publication

Weyl type upper bounds on the number of resonances near the real axis for trapped systems

Plamen Stefanov — 2001

Journées équations aux dérivées partielles

We study semiclassical resonances in a box Ω ( h ) of height h N , N 1 . We show that the semiclassical wave front set of the resonant states (including the “generalized eigenfunctions”) is contained in the set 𝒯 of the trapped bicharacteristics. We also show that for a suitable self-adjoint reference operator P # ( h ) with discrete spectrum the number of resonances in Ω ( h ) is bounded by the number of eigenvalues of P # ( h ) in an interval a bit larger than the projection of Ω ( h ) on the real line. As an application, we prove a...

Stability of the inverse problem in potential scattering at fixed energy

Plamen Stefanov — 1990

Annales de l'institut Fourier

We prove an estimate of the kind q 1 - q 2 L C ϕ ( A q 1 - A q 2 R , 3 / 2 - 1 / 2 ) , where A q i ( ω , θ ) , i = 1 , 2 is the scattering amplitude related to the compactly supported potential q i ( x ) at a fixed energy level k = const., ϕ ( t ) = ( - ln t ) - δ , 0 < δ < 1 and · R , 3 / 2 - 1 / 2 is a suitably defined norm.

Page 1

Download Results (CSV)