The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The Burchnall-Chaundy-Krichever correspondence which converts meromorphic functions on a curve into differential operators is used to interpret Weil's reciprocity as the calculation of a resultant.
Sei G eine Gruppe und H eine Untergruppe von G. Es wird eine hinreichende Bedingung, damit H eine modulare Untergruppe von G sei, angegeben.
A necessary and sufficient condition is given for a subgroup of a finite group to be a Dedekind subgroup.
We consider the linear system of second order theta functions over the Jacobian of a non-hyperelliptic curve . A result by J.Fay says that a divisor contains the origin with multiplicity if and only if contains the surface . In this paper we generalize Fay’s result and some previous work by R.C.Gunning. More precisely, we describe the relationship between divisors containing with multiplicity , divisors containing the fourfold , and divisors singular along , using the third exterior...
A lattice model with exponential interaction, was proposed and integrated by M. Toda in the 1960s; it was then extensively studied as one of the completely integrable (differential-difference) equations by algebro-geometric methods, which produced both quasi-periodic solutions in terms of theta functions of hyperelliptic curves and periodic solutions defined on suitable Jacobians by the Lax-pair method. In this work, we revisit Toda’s original approach to give solutions of the Toda lattice in terms...
Download Results (CSV)