The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We shall establish an explicit formula for the Davenport series in terms of trivial zeros of the Riemann zeta-function, where by the Davenport series we mean an infinite series involving a PNT (Prime Number Theorem) related to arithmetic function with the periodic Bernoulli polynomial weight and PNT arithmetic functions include the von Mangoldt function, Möbius function and Liouville function, etc. The Riesz sum of order or gives the well-known explicit formula for respectively the partial...
For any given positive integer k, and any set A of nonnegative integers, let denote the number of solutions of the equation n = a₁ + ka₂ with a₁,a₂ ∈ A. We prove that if k,l are multiplicatively independent integers, i.e., log k/log l is irrational, then there does not exist any set A ⊆ ℕ such that both and hold for all n ≥ n₀. We also pose a conjecture and two problems for further research.
Recently, Miyazaki and Togbé proved that for any fixed odd integer b ≥ 5 with b ≠ 89, the Diophantine equation has only the solution (x,y,z) = (1,1,1). We give an extension of this result.
Let be positive integers and , where Let be a subset of . We prove that if
where denotes the largest integer less than or equal to and denotes the cardinality of even numbers in the interval , then contains a power of . We also show that these lower bounds are best possible.
Download Results (CSV)