The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Theory of Bessel potentials. III : potentials on regular manifolds

Robert AdamsNachman AronszajnM. S. Hanna — 1969

Annales de l'institut Fourier

In this paper Bessel potentials on C -Riemannian manifolds (open or bordered) are studied. Let M be an n -dimensional manifold, and N a submanifold of M of dimension k . Sufficient conditions are given for: 1) the restriction to N of any potential of order α on M to be a potential of order α - n - k 2 on N  ; 2) any potential of order α - n - k 2 on N to be extendable to a potential of order α on M . It is also proved that for a bordered manifold M the restriction to its interior M i is an isometric isomorphism between the...

Theory of Bessel potentials. II

Robert AdamsNachman AronszajnK. T. Smith — 1967

Annales de l'institut Fourier

Dans cette partie de la théorie des potentiels besseliens on considère les restrictions de potentiels de la classe P a ( R n ) aux domaines ouverts D R n . On cherche à caractériser de manière intrinsèque la classe P a ( D ) ainsi obtenue. On attaque ce problème en définissant de manière directe (§ 2) une classe P ˇ a ( D ) P a ( D ) qui, pour des domaines assez réguliers, est égale à P a ( D ) . L’égalité P a ( D ) = P a ( D ) est équivalente à l’existence d’un opérateur-extension E : P ˇ a ( D ) P a ( R n ) , linéaire et continu, tel que E u soit une extension de u . Si...

Page 1

Download Results (CSV)