Let P and Q be additive and hereditary graph properties and let r, s be integers such that r ≥ s. Then an r/s -fractional (P,Q)-total coloring of a finite graph G = (V,E) is a mapping f, which assigns an s-element subset of the set {1, 2, . . . , r} to each vertex and each edge, moreover, for any color i all vertices of color i induce a subgraph with property P, all edges of color i induce a subgraph with property Q and vertices and incident edges have been assigned disjoint sets of colors. The...
For given nonnegative integers k,s an upper bound on the minimum number of vertices of a strongly connected digraph with exactly k kernels and s solutions is presented.
The point-distinguishing chromatic index of a graph represents the minimum number of colours in its edge colouring such that each vertex is distinguished by the set of colours of edges incident with it. Asymptotic information on jumps of the point-distinguishing chromatic index of is found.
A -ranking of a graph is a mapping such that each path with endvertices of the same colour contains an internal vertex with colour greater than . The ranking number of a graph is the smallest positive integer admitting a -ranking of . In the on-line version of the problem, the vertices of arrive one by one in an arbitrary order, and only the edges of the induced graph are known when the colour for the vertex has to be chosen. The on-line ranking number of a graph is the smallest...
Given an integer valued weighting of all elements of a 2-connected plane graph G with vertex set V , let c(v) denote the sum of the weight of v ∈ V and of the weights of all edges and all faces incident with v. This vertex coloring of G is proper provided that c(u) ≠ c(v) for any two adjacent vertices u and v of G. We show that for every 2-connected plane graph there is such a proper vertex coloring with weights in {1, 2, 3}. In a special case, the value 3 is improved to 2.
Let P be a graph property and r,s ∈ N, r ≥ s. A strong circular (P,r,s)-colouring of a graph G is an assignment f:V(G) → {0,1,...,r-1}, such that the edges uv ∈ E(G) satisfying |f(u)-f(v)| < s or |f(u)-f(v)| > r - s, induce a subgraph of G with the propery P. In this paper we present some basic results on strong circular (P,r,s)-colourings. We introduce the strong circular P-chromatic number of a graph and we determine the strong circular P-chromatic number of complete graphs for additive...
Let P and Q be additive and hereditary graph properties, r, s ∈ N, r ≥ s, and [ℤr]s be the set of all s-element subsets of ℤr. An (r, s)-fractional (P,Q)-total coloring of G is an assignment h : V (G) ∪ E(G) → [ℤr]s such that for each i ∈ ℤr the following holds: the vertices of G whose color sets contain color i induce a subgraph of G with property P, edges with color sets containing color i induce a subgraph of G with property Q, and the color sets of incident vertices and edges are disjoint. If...
In this paper we study the existence of unavoidable paths on three vertices in sparse graphs. A path uvw on three vertices u, v, and w is of type (i, j, k) if the degree of u (respectively v, w) is at most i (respectively j, k). We prove that every graph with minimum degree at least 2 and average degree strictly less than m contains a path of one of the types [...] Moreover, no parameter of this description can be improved.
Download Results (CSV)