Currently displaying 1 – 9 of 9

Showing per page

Order by Relevance | Title | Year of publication

Generalized Fractional Total Colorings of Graphs

Gabriela KarafováRoman Soták — 2015

Discussiones Mathematicae Graph Theory

Let P and Q be additive and hereditary graph properties and let r, s be integers such that r ≥ s. Then an r/s -fractional (P,Q)-total coloring of a finite graph G = (V,E) is a mapping f, which assigns an s-element subset of the set {1, 2, . . . , r} to each vertex and each edge, moreover, for any color i all vertices of color i induce a subgraph with property P, all edges of color i induce a subgraph with property Q and vertices and incident edges have been assigned disjoint sets of colors. The...

A note on on-line ranking number of graphs

Gabriel SemanišinRoman Soták — 2006

Czechoslovak Mathematical Journal

A k -ranking of a graph G = ( V , E ) is a mapping ϕ V { 1 , 2 , , k } such that each path with endvertices of the same colour c contains an internal vertex with colour greater than c . The ranking number of a graph G is the smallest positive integer k admitting a k -ranking of G . In the on-line version of the problem, the vertices v 1 , v 2 , , v n of G arrive one by one in an arbitrary order, and only the edges of the induced graph G [ { v 1 , v 2 , , v i } ] are known when the colour for the vertex v i has to be chosen. The on-line ranking number of a graph G is the smallest...

A Note On Vertex Colorings Of Plane Graphs

Igor FabriciaStanislav Jendrol’Roman Soták — 2014

Discussiones Mathematicae Graph Theory

Given an integer valued weighting of all elements of a 2-connected plane graph G with vertex set V , let c(v) denote the sum of the weight of v ∈ V and of the weights of all edges and all faces incident with v. This vertex coloring of G is proper provided that c(u) ≠ c(v) for any two adjacent vertices u and v of G. We show that for every 2-connected plane graph there is such a proper vertex coloring with weights in {1, 2, 3}. In a special case, the value 3 is improved to 2.

Generalized circular colouring of graphs

Peter MihókJanka OravcováRoman Soták — 2011

Discussiones Mathematicae Graph Theory

Let P be a graph property and r,s ∈ N, r ≥ s. A strong circular (P,r,s)-colouring of a graph G is an assignment f:V(G) → {0,1,...,r-1}, such that the edges uv ∈ E(G) satisfying |f(u)-f(v)| < s or |f(u)-f(v)| > r - s, induce a subgraph of G with the propery P. In this paper we present some basic results on strong circular (P,r,s)-colourings. We introduce the strong circular P-chromatic number of a graph and we determine the strong circular P-chromatic number of complete graphs for additive...

Generalized Fractional and Circular Total Colorings of Graphs

Arnfried KemnitzMassimiliano MarangioPeter MihókJanka OravcováRoman Soták — 2015

Discussiones Mathematicae Graph Theory

Let P and Q be additive and hereditary graph properties, r, s ∈ N, r ≥ s, and [ℤr]s be the set of all s-element subsets of ℤr. An (r, s)-fractional (P,Q)-total coloring of G is an assignment h : V (G) ∪ E(G) → [ℤr]s such that for each i ∈ ℤr the following holds: the vertices of G whose color sets contain color i induce a subgraph of G with property P, edges with color sets containing color i induce a subgraph of G with property Q, and the color sets of incident vertices and edges are disjoint. If...

3-Paths in Graphs with Bounded Average Degree

Stanislav Jendrol′Mária MacekováMickaël MontassierRoman Soták — 2016

Discussiones Mathematicae Graph Theory

In this paper we study the existence of unavoidable paths on three vertices in sparse graphs. A path uvw on three vertices u, v, and w is of type (i, j, k) if the degree of u (respectively v, w) is at most i (respectively j, k). We prove that every graph with minimum degree at least 2 and average degree strictly less than m contains a path of one of the types [...] Moreover, no parameter of this description can be improved.

Page 1

Download Results (CSV)