Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Direct summands of Goldie extending elements in modular lattices

Rupal Shroff — 2022

Mathematica Bohemica

In this paper some results on direct summands of Goldie extending elements are studied in a modular lattice. An element a of a lattice L with 0 is said to be a Goldie extending element if and only if for every b a there exists a direct summand c of a such that b c is essential in both b and c . Some characterizations of decomposition of a Goldie extending element in a modular lattice are obtained.

On Goldie absolute direct summands in modular lattices

Rupal Shroff — 2023

Mathematica Bohemica

Absolute direct summand in lattices is defined and some of its properties in modular lattices are studied. It is shown that in a certain class of modular lattices, the direct sum of two elements has absolute direct summand if and only if the elements are relatively injective. As a generalization of absolute direct summand (ADS for short), the concept of Goldie absolute direct summand in lattices is introduced and studied. It is shown that Goldie ADS property is inherited by direct summands. A necessary...

Ojective ideals in modular lattices

Shriram K. NimbhorkarRupal C. Shroff — 2015

Czechoslovak Mathematical Journal

The concept of an extending ideal in a modular lattice is introduced. A translation of module-theoretical concept of ojectivity (i.e. generalized relative injectivity) in the context of the lattice of ideals of a modular lattice is introduced. In a modular lattice satisfying a certain condition, a characterization is given for direct summands of an extending ideal to be mutually ojective. We define exchangeable decomposition and internal exchange property of an ideal in a modular lattice. It is...

Goldie extending elements in modular lattices

Shriram K. NimbhorkarRupal C. Shroff — 2017

Mathematica Bohemica

The concept of a Goldie extending module is generalized to a Goldie extending element in a lattice. An element a of a lattice L with 0 is said to be a Goldie extending element if and only if for every b a there exists a direct summand c of a such that b c is essential in both b and c . Some properties of such elements are obtained in the context of modular lattices. We give a necessary condition for the direct sum of Goldie extending elements to be Goldie extending. Some characterizations of a decomposition...

Page 1

Download Results (CSV)