The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

On the boundedness of the maximal operator and singular integral operators in generalized Morrey spaces

Ali AkbulutVagif GuliyevRza Mustafayev — 2012

Mathematica Bohemica

In the paper we find conditions on the pair ( ω 1 , ω 2 ) which ensure the boundedness of the maximal operator and the Calderón-Zygmund singular integral operators from one generalized Morrey space p , ω 1 to another p , ω 2 , 1 < p < , and from the space 1 , ω 1 to the weak space W 1 , ω 2 . As applications, we get some estimates for uniformly elliptic operators on generalized Morrey spaces.

Embeddings between weighted Copson and Cesàro function spaces

Amiran GogatishviliRza MustafayevTuğçe Ünver — 2017

Czechoslovak Mathematical Journal

In this paper, characterizations of the embeddings between weighted Copson function spaces Cop p 1 , q 1 ( u 1 , v 1 ) and weighted Cesàro function spaces Ces p 2 , q 2 ( u 2 , v 2 ) are given. In particular, two-sided estimates of the optimal constant c in the inequality d ( 0 0 t f ( τ ) p 2 v 2 ( τ ) d τ q 2 / p 2 u 2 ( t ) d t ) 1 / q 2 c 0 t f ( τ ) p 1 v 1 ( τ ) d τ q 1 / p 1 u 1 ( t ) d t 1 / q 1 , d where p 1 , p 2 , q 1 , q 2 ( 0 , ) , p 2 q 2 and u 1 , u 2 , v 1 , v 2 are weights on ( 0 , ) , are obtained. The most innovative part consists of the fact that possibly different parameters p 1 and p 2 and possibly different inner weights v 1 and v 2 are allowed. The proof is based on the combination of duality techniques with estimates...

Commutators of sublinear operators generated by Calderón-Zygmund operator on generalized weighted Morrey spaces

Vagif Sabir GuliyevTurhan KaramanRza Chingiz MustafayevAyhan Şerbetçi — 2014

Czechoslovak Mathematical Journal

In this paper, the boundedness of a large class of sublinear commutator operators T b generated by a Calderón-Zygmund type operator on a generalized weighted Morrey spaces M p , ϕ ( w ) with the weight function w belonging to Muckenhoupt’s class A p is studied. When 1 < p < and b BMO , sufficient conditions on the pair ( ϕ 1 , ϕ 2 ) which ensure the boundedness of the operator T b from M p , ϕ 1 ( w ) to M p , ϕ 2 ( w ) are found. In all cases the conditions for the boundedness of T b are given in terms of Zygmund-type integral inequalities on ( ϕ 1 , ϕ 2 ) , which do not require...

Page 1

Download Results (CSV)