Complete holomorphic vector fields on the second dual of Banach space.
We introduce a decomposition of holomorphic functions on Fréchet spaces which reduces to the Taylor series expansion in the case of Banach spaces and to the monomial expansion in the case of Fréchet nuclear spaces with basis. We apply this decomposition to obtain examples of Fréchet spaces E for which the τ_{ω} and τ_{δ} topologies on H(E) coincide. Our result includes, with simplified proofs, the main known results-Banach spaces with an unconditional basis and Fréchet nuclear spaces with DN [2,...
This article is devoted to a study of locally convex topologies on (where is an open subset of the locally convex topological vector space and is the set of all complex valued holomorphic functions on ). We discuss the following topologies on : (a) the compact open topology , (b) the bornological topology associated with , (c) the ported topology of Nachbin , (d) the bornological topology associated with ; and (e) the topological...
In this article we discuss the relationship between domains of existence domains of holomorphy, holomorphically convex domains, pseudo convex domains, in the context of locally convex topological vector spaces. By using the method of Hirschowitz for and the method used for Banach spaces with a basis we prove generalisations of the Cartan-Thullen-Oka-Norguet-Bremmerman theorem for finitely polynomially convex domains in a variety of locally convex spaces which include the following: ...
We compute the completely bounded Banach-Mazur distance between different finite-dimensional homogeneous Hilbertian operator spaces.
Page 1 Next