Holomorphic functions on locally convex topological vector spaces. II. Pseudo convex domains
Annales de l'institut Fourier (1973)
- Volume: 23, Issue: 3, page 155-185
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topDineen, Sean. "Holomorphic functions on locally convex topological vector spaces. II. Pseudo convex domains." Annales de l'institut Fourier 23.3 (1973): 155-185. <http://eudml.org/doc/74136>.
@article{Dineen1973,
abstract = {In this article we discuss the relationship between domains of existence domains of holomorphy, holomorphically convex domains, pseudo convex domains, in the context of locally convex topological vector spaces. By using the method of Hirschowitz for $\Pi ^\infty _\{n=1\}\{\bf C\}$ and the method used for Banach spaces with a basis we prove generalisations of the Cartan-Thullen-Oka-Norguet-Bremmerman theorem for finitely polynomially convex domains in a variety of locally convex spaces which include the following:1) $N$-projective limits of Frechet spaces with a basis;2) countable direct sums of Frechet spaces with a basis;3) nuclear spaces.},
author = {Dineen, Sean},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {3},
pages = {155-185},
publisher = {Association des Annales de l'Institut Fourier},
title = {Holomorphic functions on locally convex topological vector spaces. II. Pseudo convex domains},
url = {http://eudml.org/doc/74136},
volume = {23},
year = {1973},
}
TY - JOUR
AU - Dineen, Sean
TI - Holomorphic functions on locally convex topological vector spaces. II. Pseudo convex domains
JO - Annales de l'institut Fourier
PY - 1973
PB - Association des Annales de l'Institut Fourier
VL - 23
IS - 3
SP - 155
EP - 185
AB - In this article we discuss the relationship between domains of existence domains of holomorphy, holomorphically convex domains, pseudo convex domains, in the context of locally convex topological vector spaces. By using the method of Hirschowitz for $\Pi ^\infty _{n=1}{\bf C}$ and the method used for Banach spaces with a basis we prove generalisations of the Cartan-Thullen-Oka-Norguet-Bremmerman theorem for finitely polynomially convex domains in a variety of locally convex spaces which include the following:1) $N$-projective limits of Frechet spaces with a basis;2) countable direct sums of Frechet spaces with a basis;3) nuclear spaces.
LA - eng
UR - http://eudml.org/doc/74136
ER -
References
top- [1] H. ALEXANDER, Analytic function on Banach spaces, Thesis, University of California at Berkeley, 1968.
- [2]J. BOCHNAK, J. SISIAK, Fonctions analytiques dans les espaces vectoriels réels ou complexes, C.R. Acad. Sc., Paris, t. 270, (1970) 643-646. Zbl0189.42701MR43 #7920
- [3]J. BOCHNAK, J. SISIAK, Analytic functions in topological vector spaces, Studia Math. 39, 1, (1971). Zbl0214.37703MR47 #2365
- [4]H. BREMMERMAN, Complex Convexity, Trans. Amer. Math. Soc., 82, 1, 17-51, (1956). Zbl0070.30402MR18,28f
- [5]H. BREMMERMAN, The envelope of holomorphy of tube domains in infinite dimensional Banach spaces. Pac. Jour. Math. 10, 4, 1149-1153, (1960). Zbl0115.32902
- [6]H. BREMMERMAN, Holomorphic functionals and complex convexity in Banach spaces, Pac. Jour. Math. 7, 1, (1957), 811-831. Zbl0078.10901MR19,567c
- [7]H. BREMMERMAN, Construction of the envelopes of holomorphy of arbitrary domains, Rev. Math. Hispano Americana, (1957), 4, 17, 1-26. Zbl0087.08201
- [8]H. BREMMERMAN, Pseudo Convex domains in linear topological spaces, Proc. Conf. on Complex Analysis, (1964). Minneapolis, Springer-Verlag 1965. Zbl0141.11802
- [9]G. COEURÉ, Fonctions plurisousharmoniques sur les espaces vectoriels topologiques, Annales de l'Institut Fourier, t. 20, Zbl0187.39003
- [10]S. DINEEN, Holomorphic functions on (C0, xb) — Modules, Math. Annalen, 196, 106-116, (1972). Zbl0219.46021MR45 #9118
- [11]S. DINEEN, Topologie de Nachbin et prolongement analytique en dimension infinie, C.R. Acad. Sc., Paris, t. 271, 643-644, (1970). Zbl0198.46002MR43 #887
- [12]S. DINEEN, The Cartan-Thullen theorem for Banach spaces, Annali Scuola Normale Sup., Pisa, 24, 4, 667-674, (1970). Zbl0235.46037MR43 #3487
- [13]S. DINEEN, Runge's theorem for Banach spaces Proc. Royal Irish Acad., 71(A), 85-89, 1971. Zbl0212.14801
- [14]S. DINEEN, Convexité holomorphe en dimension infinie. Séminaire Lelong, 1970-1971. Zbl0246.32013
- [15]S. DINEEN, Holomorphic functions on locally convex topological vector spaces 1, Locally convex topologies on ℋ(U). (to appear in Annales de l'Institut Fourier). Zbl0241.46022
- [16]S. DINEEN, and A. HIRSCHOWITZ, Sur le théorème de Banach-Levi, C.R. Acad. Sc., Paris, t. 272, (1971), 1245-1247. Zbl0212.14702MR43 #3488
- [17]M. HERVÉ, Analytic Continuation in Banach Spaces, International Conference on several complex Variables, University of Maryland, 1970, Springer-Verlag, Bd. 185, 1971. Zbl0207.43203
- [18]A. HIRSCHOWITZ, Remarques sur les ouverts d'holomorphie d'un produit dénombrable de droites, Annales de l'Institut. Fourier, t. 191, 1, (1969), 219-229. Zbl0207.08203MR40 #5892
- [19] A. HIRSCHOWITZ, Sur le non-prolongement des variétés analytiques Banachiques réelles, C.R. Acad. Sc., Paris, 269, 844-846, (1969). Zbl0205.12203MR40 #6591
- [20] A. HIRSCHOWITZ, Bornologie des espaces de fonctions analytiques en dimension infinie, Séminaire P. Lelong, 1970, Springer-Verlag, Bd. 205, 1971. Zbl0225.46027
- [21] A. HIRSCHOWITZ, Diverses notions d'ouverts d'analyticité en dimension infinie, Sém. P. Lelong, 1970, Springer-Verlag, Bd. 205, 1971. Zbl0225.46026
- [22] A. HIRSCHOWITZ, Sur les suites de fonctions analytiques, Ann. Inst. Fourier, 20, 2, 1970. Zbl0195.40905MR44 #3104
- [23] A. HIRSCHOWITZ, Prolongement analytique en dimension infinie. Ann. Inst. Fourier, t. 22, 1972, p. 255. Zbl0224.32015MR49 #11256
- [24] L. HÖRMANDER, An introduction to complex analysis in several variables, Van Nostrand 1966. Zbl0138.06203
- [25] P. LELONG, Recent results on analytic mappings and plurisubharmonic functions in topological linear spaces, Internat. Conf. on several complex variables, Univ. of Maryland 1970. Springer-Verlag, Bd 185, 1971. Zbl0205.41402
- [26] M.C. MATOS, Holomorphic mappings and domains of holomorphy, Thesis, University of Rochester 1970. Zbl0233.32004
- [27] M.C. MATOS, Sur l'enveloppe d'holomorphie des domaines de Riemann sur un produit dénombrable de droites, C.R. Acad. Sc., Paris, t. 271, 727-728, (1970). Zbl0198.46101MR42 #3554
- [28] L. NACHBIN, Holomorphic functions, domains of holomorphy, local properties, North Holland, (1970). Zbl0208.10301MR43 #558
- [29] L. NACHBIN, Uniformité d'holomorphie et type exponentiel, Sém. Lelong, (1970-1971). Zbl0218.46024
- [30] L. NACHBIN and J.A. BARROSO, Sur certaines propriétés bornologiques des espaces d'applications holomorphes, Colloque d'Analyse Fonctionnelle, Liege, 1970. Zbl0293.46021
- [31] P. NOVERRAZ, Fonctions plurisousharmoniques et analytiques dans les espaces vectoriels topologiques complexes, Annales de l'Institut Fourier, 19, 1, 1969, p. 419-493. Zbl0176.09903MR42 #537
- [32] P. NOVERRAZ, Sur la convexité fonctionnelle dans les espaces de Banach à base, C.R. Acad. Sc., Paris, t. 271, 990-992, 1970.
- [33] P. NOVERRAZ, Pseudo Convexité, Convexité Polynomiale et Domaines d'Holomorphie en Dimension Infinie. Notas de Matematica 3, North Holland, 1973. Zbl0251.46049
Citations in EuDML Documents
top- Seán Dineen, Philippe Noverraz, Martin Schottenloher, Le problème de Lévi dans certains espaces vectoriels topologiques localement convexes
- Philipe Noverraz, Le problème de Levi en dimension infinie
- Martin Schottenloher, The Levi problem for domains spread over locally convex spaces with a finite dimensional Schauder decomposition
- Seán Dineen, Surjective limits of locally convex spaces and their application to infinite dimensional holomorphy
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.