Holomorphic functions on locally convex topological vector spaces. II. Pseudo convex domains

Sean Dineen

Annales de l'institut Fourier (1973)

  • Volume: 23, Issue: 3, page 155-185
  • ISSN: 0373-0956

Abstract

top
In this article we discuss the relationship between domains of existence domains of holomorphy, holomorphically convex domains, pseudo convex domains, in the context of locally convex topological vector spaces. By using the method of Hirschowitz for Π n = 1 C and the method used for Banach spaces with a basis we prove generalisations of the Cartan-Thullen-Oka-Norguet-Bremmerman theorem for finitely polynomially convex domains in a variety of locally convex spaces which include the following:1) N -projective limits of Frechet spaces with a basis;2) countable direct sums of Frechet spaces with a basis;3) nuclear spaces.

How to cite

top

Dineen, Sean. "Holomorphic functions on locally convex topological vector spaces. II. Pseudo convex domains." Annales de l'institut Fourier 23.3 (1973): 155-185. <http://eudml.org/doc/74136>.

@article{Dineen1973,
abstract = {In this article we discuss the relationship between domains of existence domains of holomorphy, holomorphically convex domains, pseudo convex domains, in the context of locally convex topological vector spaces. By using the method of Hirschowitz for $\Pi ^\infty _\{n=1\}\{\bf C\}$ and the method used for Banach spaces with a basis we prove generalisations of the Cartan-Thullen-Oka-Norguet-Bremmerman theorem for finitely polynomially convex domains in a variety of locally convex spaces which include the following:1) $N$-projective limits of Frechet spaces with a basis;2) countable direct sums of Frechet spaces with a basis;3) nuclear spaces.},
author = {Dineen, Sean},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {3},
pages = {155-185},
publisher = {Association des Annales de l'Institut Fourier},
title = {Holomorphic functions on locally convex topological vector spaces. II. Pseudo convex domains},
url = {http://eudml.org/doc/74136},
volume = {23},
year = {1973},
}

TY - JOUR
AU - Dineen, Sean
TI - Holomorphic functions on locally convex topological vector spaces. II. Pseudo convex domains
JO - Annales de l'institut Fourier
PY - 1973
PB - Association des Annales de l'Institut Fourier
VL - 23
IS - 3
SP - 155
EP - 185
AB - In this article we discuss the relationship between domains of existence domains of holomorphy, holomorphically convex domains, pseudo convex domains, in the context of locally convex topological vector spaces. By using the method of Hirschowitz for $\Pi ^\infty _{n=1}{\bf C}$ and the method used for Banach spaces with a basis we prove generalisations of the Cartan-Thullen-Oka-Norguet-Bremmerman theorem for finitely polynomially convex domains in a variety of locally convex spaces which include the following:1) $N$-projective limits of Frechet spaces with a basis;2) countable direct sums of Frechet spaces with a basis;3) nuclear spaces.
LA - eng
UR - http://eudml.org/doc/74136
ER -

References

top
  1. [1] H. ALEXANDER, Analytic function on Banach spaces, Thesis, University of California at Berkeley, 1968. 
  2. [2]J. BOCHNAK, J. SISIAK, Fonctions analytiques dans les espaces vectoriels réels ou complexes, C.R. Acad. Sc., Paris, t. 270, (1970) 643-646. Zbl0189.42701MR43 #7920
  3. [3]J. BOCHNAK, J. SISIAK, Analytic functions in topological vector spaces, Studia Math. 39, 1, (1971). Zbl0214.37703MR47 #2365
  4. [4]H. BREMMERMAN, Complex Convexity, Trans. Amer. Math. Soc., 82, 1, 17-51, (1956). Zbl0070.30402MR18,28f
  5. [5]H. BREMMERMAN, The envelope of holomorphy of tube domains in infinite dimensional Banach spaces. Pac. Jour. Math. 10, 4, 1149-1153, (1960). Zbl0115.32902
  6. [6]H. BREMMERMAN, Holomorphic functionals and complex convexity in Banach spaces, Pac. Jour. Math. 7, 1, (1957), 811-831. Zbl0078.10901MR19,567c
  7. [7]H. BREMMERMAN, Construction of the envelopes of holomorphy of arbitrary domains, Rev. Math. Hispano Americana, (1957), 4, 17, 1-26. Zbl0087.08201
  8. [8]H. BREMMERMAN, Pseudo Convex domains in linear topological spaces, Proc. Conf. on Complex Analysis, (1964). Minneapolis, Springer-Verlag 1965. Zbl0141.11802
  9. [9]G. COEURÉ, Fonctions plurisousharmoniques sur les espaces vectoriels topologiques, Annales de l'Institut Fourier, t. 20, Zbl0187.39003
  10. [10]S. DINEEN, Holomorphic functions on (C0, xb) — Modules, Math. Annalen, 196, 106-116, (1972). Zbl0219.46021MR45 #9118
  11. [11]S. DINEEN, Topologie de Nachbin et prolongement analytique en dimension infinie, C.R. Acad. Sc., Paris, t. 271, 643-644, (1970). Zbl0198.46002MR43 #887
  12. [12]S. DINEEN, The Cartan-Thullen theorem for Banach spaces, Annali Scuola Normale Sup., Pisa, 24, 4, 667-674, (1970). Zbl0235.46037MR43 #3487
  13. [13]S. DINEEN, Runge's theorem for Banach spaces Proc. Royal Irish Acad., 71(A), 85-89, 1971. Zbl0212.14801
  14. [14]S. DINEEN, Convexité holomorphe en dimension infinie. Séminaire Lelong, 1970-1971. Zbl0246.32013
  15. [15]S. DINEEN, Holomorphic functions on locally convex topological vector spaces 1, Locally convex topologies on ℋ(U). (to appear in Annales de l'Institut Fourier). Zbl0241.46022
  16. [16]S. DINEEN, and A. HIRSCHOWITZ, Sur le théorème de Banach-Levi, C.R. Acad. Sc., Paris, t. 272, (1971), 1245-1247. Zbl0212.14702MR43 #3488
  17. [17]M. HERVÉ, Analytic Continuation in Banach Spaces, International Conference on several complex Variables, University of Maryland, 1970, Springer-Verlag, Bd. 185, 1971. Zbl0207.43203
  18. [18]A. HIRSCHOWITZ, Remarques sur les ouverts d'holomorphie d'un produit dénombrable de droites, Annales de l'Institut. Fourier, t. 191, 1, (1969), 219-229. Zbl0207.08203MR40 #5892
  19. [19] A. HIRSCHOWITZ, Sur le non-prolongement des variétés analytiques Banachiques réelles, C.R. Acad. Sc., Paris, 269, 844-846, (1969). Zbl0205.12203MR40 #6591
  20. [20] A. HIRSCHOWITZ, Bornologie des espaces de fonctions analytiques en dimension infinie, Séminaire P. Lelong, 1970, Springer-Verlag, Bd. 205, 1971. Zbl0225.46027
  21. [21] A. HIRSCHOWITZ, Diverses notions d'ouverts d'analyticité en dimension infinie, Sém. P. Lelong, 1970, Springer-Verlag, Bd. 205, 1971. Zbl0225.46026
  22. [22] A. HIRSCHOWITZ, Sur les suites de fonctions analytiques, Ann. Inst. Fourier, 20, 2, 1970. Zbl0195.40905MR44 #3104
  23. [23] A. HIRSCHOWITZ, Prolongement analytique en dimension infinie. Ann. Inst. Fourier, t. 22, 1972, p. 255. Zbl0224.32015MR49 #11256
  24. [24] L. HÖRMANDER, An introduction to complex analysis in several variables, Van Nostrand 1966. Zbl0138.06203
  25. [25] P. LELONG, Recent results on analytic mappings and plurisubharmonic functions in topological linear spaces, Internat. Conf. on several complex variables, Univ. of Maryland 1970. Springer-Verlag, Bd 185, 1971. Zbl0205.41402
  26. [26] M.C. MATOS, Holomorphic mappings and domains of holomorphy, Thesis, University of Rochester 1970. Zbl0233.32004
  27. [27] M.C. MATOS, Sur l'enveloppe d'holomorphie des domaines de Riemann sur un produit dénombrable de droites, C.R. Acad. Sc., Paris, t. 271, 727-728, (1970). Zbl0198.46101MR42 #3554
  28. [28] L. NACHBIN, Holomorphic functions, domains of holomorphy, local properties, North Holland, (1970). Zbl0208.10301MR43 #558
  29. [29] L. NACHBIN, Uniformité d'holomorphie et type exponentiel, Sém. Lelong, (1970-1971). Zbl0218.46024
  30. [30] L. NACHBIN and J.A. BARROSO, Sur certaines propriétés bornologiques des espaces d'applications holomorphes, Colloque d'Analyse Fonctionnelle, Liege, 1970. Zbl0293.46021
  31. [31] P. NOVERRAZ, Fonctions plurisousharmoniques et analytiques dans les espaces vectoriels topologiques complexes, Annales de l'Institut Fourier, 19, 1, 1969, p. 419-493. Zbl0176.09903MR42 #537
  32. [32] P. NOVERRAZ, Sur la convexité fonctionnelle dans les espaces de Banach à base, C.R. Acad. Sc., Paris, t. 271, 990-992, 1970. 
  33. [33] P. NOVERRAZ, Pseudo Convexité, Convexité Polynomiale et Domaines d'Holomorphie en Dimension Infinie. Notas de Matematica 3, North Holland, 1973. Zbl0251.46049

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.