Lower estimates for random walks on a class of amenable -adic groups.
On montre, pour une classe particulière de groupes non-unimodulaires , où est un groupe de Lie stratifié et où l’action de est définie par les dilatations naturelles de , et pour les sous-laplaciens invariants à gauche correspondants , que toute fonction possédant un support compact dans définit un opérateur borné sur les espaces de Lebesgue associés à la mesure de Haar invariante à droite sur , .
Given a smooth family of vector fields satisfying Chow-Hörmander’s condition of step 2 and a regularity assumption, we prove that the Sobolev spaces of fractional order constructed by the standard functional analysis can actually be “computed” with a simple formula involving the sub-riemannian distance. Our approach relies on a microlocal analysis of translation operators in an anisotropic context. It also involves classical estimates of the heat-kernel associated to the sub-elliptic...
Page 1