In this paper we study generic coverings of branched over a curve s.t. the total space is a normal analytic surface, in terms of a graph representing the monodromy of the covering, called monodromy graph. A complete description of the monodromy graphs and of the local fundamental groups is found in case the branch curve is (with ) and the degree of the cover is equal to or .
Let be the -th ordered configuration space of all distinct points in the Grassmannian of -dimensional subspaces of , whose sum is a subspace of dimension . We prove that is (when non empty) a complex submanifold of of dimension and its fundamental group is trivial if , and and equal to the braid group of the sphere
if . Eventually we compute the fundamental group in the special case of hyperplane arrangements, i.e. .
Download Results (CSV)