The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this paper we compute injective, projective and flat dimensions of inverse polynomial modules as -modules. We also generalize Hom and Ext functors of inverse polynomial modules to any submonoid but we show Tor functor of inverse polynomial modules can be generalized only for a symmetric submonoid.
We study whether the projective and injective properties of left -modules can be implied to the special kind of left -modules, especially to the case of inverse polynomial modules and Laurent polynomial modules.
The paper was motivated by Kovacs’ paper (1973), Isaacs’ paper (1980) and a recent paper, due to Brešar et al. (2018), concerning Skolem-Noether algebras. Let be a unital commutative ring, not necessarily a field. Given a unital -algebra , where is contained in the center of , , the goal of this paper is to study the question: when can a homomorphism be extended to an inner automorphism of ? As an application of main results presented in the paper, it is proved that if is a semilocal...
Download Results (CSV)