The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

The ¯ -Neumann operator on Lipschitz q -pseudoconvex domains

Sayed Saber — 2011

Czechoslovak Mathematical Journal

On a bounded q -pseudoconvex domain Ω in n with a Lipschitz boundary, we prove that the ¯ -Neumann operator N satisfies a subelliptic ( 1 / 2 ) -estimate on Ω and N can be extended as a bounded operator from Sobolev ( - 1 / 2 ) -spaces to Sobolev ( 1 / 2 ) -spaces.

The L 2 ¯ -Cauchy problem on weakly q -pseudoconvex domains in Stein manifolds

Sayed Saber — 2015

Czechoslovak Mathematical Journal

Let X be a Stein manifold of complex dimension n 2 and Ω X be a relatively compact domain with C 2 smooth boundary in X . Assume that Ω is a weakly q -pseudoconvex domain in X . The purpose of this paper is to establish sufficient conditions for the closed range of ¯ on Ω . Moreover, we study the ¯ -problem on Ω . Specifically, we use the modified weight function method to study the weighted ¯ -problem with exact support in Ω . Our method relies on the L 2 -estimates by Hörmander (1965) and by Kohn (1973).

Page 1

Download Results (CSV)