The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

The Turàn number of the graph 3P4

Halina BielakSebastian Kieliszek — 2014

Annales UMCS, Mathematica

Let ex (n,G) denote the maximum number of edges in a graph on n vertices which does not contain G as a subgraph. Let Pi denote a path consisting of i vertices and let mPi denote m disjoint copies of Pi. In this paper we count ex(n, 3P4)

The Turán Number of the Graph 2P5

Halina BielakSebastian Kieliszek — 2016

Discussiones Mathematicae Graph Theory

We give the Turán number ex (n, 2P5) for all positive integers n, improving one of the results of Bushaw and Kettle [Turán numbers of multiple paths and equibipartite forests, Combininatorics, Probability and Computing, 20 (2011) 837-853]. In particular we prove that ex (n, 2P5) = 3n−5 for n ≥ 18.

The Turán number of the graph 3 P 4

Halina BielakSebastian Kieliszek — 2014

Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica

Let e x ( n , G ) denote the maximum number of edges in a graph on n vertices which does not contain G as a subgraph. Let P i denote a path consisting of i vertices and let m P i denote m disjoint copies of P i . In this paper we count e x ( n , 3 P 4 ) .

Page 1

Download Results (CSV)