Currently displaying 1 – 8 of 8

Showing per page

Order by Relevance | Title | Year of publication

Critères de convexité et inégalités intégrales

Serge Dubuc — 1977

Annales de l'institut Fourier

Pour trois fonctions non-négatives intégrables sur R n , f , g et h , telles que ( h ( x + y ) ) - 1 / n ( f ( x ) ) - 1 / n + ( g ( y ) ) - 1 / n , Borelll a établi l’inégalité h ( z ) d z min f ( x ) d x , g ( y ) d y ) . Nous déterminons les conditions précises où l’inégalité sera stricte. La clef de cette analyse est une nouvelle caractérisation des fonctions convexes mesurables.

Problèmes relatifs à l'itération de fonctions suggérés par les processus en cascade

Serge Dubuc — 1971

Annales de l'institut Fourier

Dans la première partie du travail, l’auteur étudie les fonctions harmoniques associées à un processus en cascade sans disparition d’individus. Il achève la caractérisation des fonctions harmoniques positives extrémales, entreprise dans deux articles précédents et il détermine le comportement asymptotique de celles-ci. Un certain nombre d’exemples de fonctions harmoniques sont décrits. La deuxième partie du travail porte sur les fonctions harmoniques positives qui sont des fonctionnelles linéaires...

Numerical solutions of the mass transfer problem

Serge DubucIssa Kagabo — 2006

RAIRO - Operations Research

Let and be two probability measures on the real line and let be a lower semicontinuous function on the plane. The mass transfer problem consists in determining a measure whose marginals coincide with and , and whose total cost d is minimum. In this paper we present three algorithms to solve numerically this Monge-Kantorovitch problem when the commodity being shipped is one-dimensional and not necessarily confined to a . We illustrate these numerical methods and determine the convergence...

Trivial Cases for the Kantorovitch Problem

Serge DubucIssa KagaboPatrice Marcotte — 2010

RAIRO - Operations Research

Let and be two compact spaces endowed with respective measures and satisfying the condition . Let be a continuous function on the product space . The mass transfer problem consists in determining a measure on whose marginals coincide with and , and such that the total cost be minimized. We first show that if the cost function is decomposable, i.e., can be represented as the sum of two continuous functions defined on and , respectively, then every feasible measure is optimal. Conversely, when...

Page 1

Download Results (CSV)