The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The definition of lacunary strong convergence is extended to a definition of lacunary strong convergence with respect to a sequence of modulus functions in a Banach space. We study some connections between lacunary statistical convergence and lacunary strong convergence with respect to a sequence of modulus functions in a Banach space.
In this paper we study the set of statistical cluster points of sequences in -dimensional spaces. We show that some properties of the set of statistical cluster points of the real number sequences remain in force for the sequences in -dimensional spaces too. We also define a notion of -statistical convergence. A sequence is -statistically convergent to a set if is a minimal closed set such that for every the set has density zero. It is shown that every statistically bounded sequence...
Download Results (CSV)