The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Lacunary strong convergence with respect to a sequence of modulus functions

Serpil PehlivanBrian Fisher — 1995

Commentationes Mathematicae Universitatis Carolinae

The definition of lacunary strong convergence is extended to a definition of lacunary strong convergence with respect to a sequence of modulus functions in a Banach space. We study some connections between lacunary statistical convergence and lacunary strong convergence with respect to a sequence of modulus functions in a Banach space.

Statistical cluster points of sequences in finite dimensional spaces

Serpil PehlivanA. GüncanM. A. Mamedov — 2004

Czechoslovak Mathematical Journal

In this paper we study the set of statistical cluster points of sequences in m -dimensional spaces. We show that some properties of the set of statistical cluster points of the real number sequences remain in force for the sequences in m -dimensional spaces too. We also define a notion of Γ -statistical convergence. A sequence x is Γ -statistically convergent to a set C if C is a minimal closed set such that for every ϵ > 0 the set { k ρ ( C , x k ) ϵ } has density zero. It is shown that every statistically bounded sequence...

Page 1

Download Results (CSV)