The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let be a local ring, an ideal of and a nonzero Artinian -module of Noetherian dimension with . We determine the annihilator of the top local homology module . In fact, we prove that
where denotes the smallest submodule of such that . As a consequence, it follows that for a complete local ring all associated primes of are minimal.
Let be an ideal of Noetherian local ring and a finitely generated -module of dimension . In this paper we investigate the Artinianness of formal local cohomology modules under certain conditions on the local cohomology modules with respect to . Also we prove that for an arbitrary local ring (not necessarily complete), we have
Let be an ideal of Noetherian ring and a finitely generated -module. In this paper, we introduce the concept of weakly colaskerian modules and by using this concept, we give some vanishing and finiteness results for local homology modules. Let , we will prove that for any integer
-
If
...
Download Results (CSV)