Currently displaying 1 – 9 of 9

Showing per page

Order by Relevance | Title | Year of publication

Exponents of two-colored digraphs

Yan Ling ShaoYubin Gao — 2009

Czechoslovak Mathematical Journal

We consider the primitive two-colored digraphs whose uncolored digraph has n + s vertices and consists of one n -cycle and one ( n - 3 ) -cycle. We give bounds on the exponents and characterizations of extremal two-colored digraphs.

The inertia set of nonnegative symmetric sign pattern with zero diagonal

Yubin GaoYan Ling Shao — 2003

Czechoslovak Mathematical Journal

The inertia set of a symmetric sign pattern A is the set i ( A ) = { i ( B ) B = B T Q ( A ) } , where i ( B ) denotes the inertia of real symmetric matrix B , and Q ( A ) denotes the sign pattern class of A . In this paper, a complete characterization on the inertia set of the nonnegative symmetric sign pattern A in which each diagonal entry is zero and all off-diagonal entries are positive is obtained. Further, we also consider the bound for the numbers of nonzero entries in the nonnegative symmetric sign patterns A with zero diagonal that require...

The primitive Boolean matrices with the second largest scrambling index by Boolean rank

Yan Ling ShaoYubin Gao — 2014

Czechoslovak Mathematical Journal

The scrambling index of an n × n primitive Boolean matrix A is the smallest positive integer k such that A k ( A T ) k = J , where A T denotes the transpose of A and J denotes the n × n all ones matrix. For an m × n Boolean matrix M , its Boolean rank b ( M ) is the smallest positive integer b such that M = A B for some m × b Boolean matrix A and b × n Boolean matrix B . In 2009, M. Akelbek, S. Fital, and J. Shen gave an upper bound on the scrambling index of an n × n primitive matrix M in terms of its Boolean rank b ( M ) , and they also characterized all primitive...

Some properties of generalized distance eigenvalues of graphs

Yuzheng MaYan Ling Shao — 2024

Czechoslovak Mathematical Journal

Let G be a simple connected graph with vertex set V ( G ) = { v 1 , v 2 , , v n } and edge set E ( G ) , and let d v i be the degree of the vertex v i . Let D ( G ) be the distance matrix and let T r ( G ) be the diagonal matrix of the vertex transmissions of G . The generalized distance matrix of G is defined as D α ( G ) = α T r ( G ) + ( 1 - α ) D ( G ) , where 0 α 1 . Let λ 1 ( D α ( G ) ) λ 2 ( D α ( G ) ) ... λ n ( D α ( G ) ) be the generalized distance eigenvalues of G , and let k be an integer with 1 k n . We denote by S k ( D α ( G ) ) = λ 1 ( D α ( G ) ) + λ 2 ( D α ( G ) ) + ... + λ k ( D α ( G ) ) the sum of the k largest generalized distance eigenvalues. The generalized distance spread of a graph G is defined as D α S ( G ) = λ 1 ( D α ( G ) ) - λ n ( D α ( G ) ) . We obtain some...

± sign pattern matrices that allow orthogonality

Yan Ling ShaoLiang SunYubin Gao — 2006

Czechoslovak Mathematical Journal

A sign pattern A is a ± sign pattern if A has no zero entries. A allows orthogonality if there exists a real orthogonal matrix B whose sign pattern equals A . Some sufficient conditions are given for a sign pattern matrix to allow orthogonality, and a complete characterization is given for ± sign patterns with n - 1 N - ( A ) n + 1 to allow orthogonality.

𝒟 n , r is not potentially nilpotent for n 4 r - 2

Yan Ling ShaoYubin GaoWei Gao — 2016

Czechoslovak Mathematical Journal

An n × n sign pattern 𝒜 is said to be potentially nilpotent if there exists a nilpotent real matrix B with the same sign pattern as 𝒜 . Let 𝒟 n , r be an n × n sign pattern with 2 r n such that the superdiagonal and the ( n , n ) entries are positive, the ( i , 1 ) ( i = 1 , , r ) and ( i , i - r + 1 ) ( i = r + 1 , , n ) entries are negative, and zeros elsewhere. We prove that for r 3 and n 4 r - 2 , the sign pattern 𝒟 n , r is not potentially nilpotent, and so not spectrally arbitrary.

A new family of spectrally arbitrary ray patterns

Yinzhen MeiYubin GaoYan Ling ShaoPeng Wang — 2016

Czechoslovak Mathematical Journal

An n × n ray pattern 𝒜 is called a spectrally arbitrary ray pattern if the complex matrices in Q ( 𝒜 ) give rise to all possible complex polynomials of degree n . In a paper of Mei, Gao, Shao, and Wang (2014) was proved that the minimum number of nonzeros in an n × n irreducible spectrally arbitrary ray pattern is 3 n - 1 . In this paper, we introduce a new family of spectrally arbitrary ray patterns of order n with exactly 3 n - 1 nonzeros.

Rational realization of the minimum ranks of nonnegative sign pattern matrices

Wei FangWei GaoYubin GaoFei GongGuangming JingZhongshan LiYan Ling ShaoLihua Zhang — 2016

Czechoslovak Mathematical Journal

A sign pattern matrix (or nonnegative sign pattern matrix) is a matrix whose entries are from the set { + , - , 0 } ( { + , 0 } , respectively). The minimum rank (or rational minimum rank) of a sign pattern matrix 𝒜 is the minimum of the ranks of the matrices (rational matrices, respectively) whose entries have signs equal to the corresponding entries of 𝒜 . Using a correspondence between sign patterns with minimum rank r 2 and point-hyperplane configurations in r - 1 and Steinitz’s theorem on the rational realizability of...

Page 1

Download Results (CSV)