In the present paper we introduce some multiplier sequence spaces over n-normed spaces defined by a Musielak–Orlicz function M = (Mk). We also study some topological properties and some inclusion relations between these spaces. 2010 Mathematics Subject Classification: 40A05, 46A45, 46E30.
The invertible, closed range, compact, Fredholm and isometric composition operators on Musielak-Orlicz spaces of Bochner type are characterized in the paper.
In the present paper we introduce some double sequence spaces defined by a sequence of modulus function over -normed spaces. We also make an effort to study some topological properties and inclusion relations between these spaces.
In this paper we introduce a new sequence space defined by a sequence of Orlicz functions and study some topological properties of this sequence space.
In this paper, we define some classes of double sequences over -normed spaces by means of an Orlicz function. We study some relevant algebraic and topological properties. Further some inclusion relations among the classes are also examined.
Download Results (CSV)