An identity on partial generalized automorphisms of prime rings
Let be a prime ring with center and a nonzero right ideal of . Suppose that admits a generalized reverse derivation such that . In the present paper, we shall prove that if one of the following conditions holds: (i) , (ii) , (iii) , (iv) , (v) , (vi) for all , then is commutative.
Let be a prime ring, a nonzero ideal of , a derivation of and fixed positive integers. (i) If for all , then is commutative. (ii) If and for all , then is commutative. Moreover, we also examine the case when is a semiprime ring.
Let be a prime ring with center and be a nonzero ideal of . In this manuscript, we investigate the action of skew derivation of which acts as a homomorphism or an anti-homomorphism on . Moreover, we provide an example for semiprime case.
Page 1