The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 5 of 5

Showing per page

Order by Relevance | Title | Year of publication

Derivations with Engel conditions in prime and semiprime rings

Shuliang Huang — 2011

Czechoslovak Mathematical Journal

Let R be a prime ring, I a nonzero ideal of R , d a derivation of R and m , n fixed positive integers. (i) If ( d [ x , y ] ) m = [ x , y ] n for all x , y I , then R is commutative. (ii) If Char R 2 and [ d ( x ) , d ( y ) ] m = [ x , y ] n for all x , y I , then R is commutative. Moreover, we also examine the case when R is a semiprime ring.

Generalized reverse derivations and commutativity of prime rings

Shuliang Huang — 2019

Communications in Mathematics

Let R be a prime ring with center Z ( R ) and I a nonzero right ideal of R . Suppose that R admits a generalized reverse derivation ( F , d ) such that d ( Z ( R ) ) 0 . In the present paper, we shall prove that if one of the following conditions holds: (i) F ( x y ) ± x y Z ( R ) , (ii) F ( [ x , y ] ) ± [ F ( x ) , y ] Z ( R ) , (iii) F ( [ x , y ] ) ± [ F ( x ) , F ( y ) ] Z ( R ) , (iv) F ( x y ) ± F ( x ) F ( y ) Z ( R ) , (v) [ F ( x ) , y ] ± [ x , F ( y ) ] Z ( R ) , (vi) F ( x ) y ± x F ( y ) Z ( R ) for all x , y I , then R is commutative.

Page 1

Download Results (CSV)