We present a method for estimating the edge of a two-dimensional bounded set, given a finite random set of points drawn from the interior. The estimator is based both on a Parzen-Rosenblatt kernel and extreme values of point processes. We give conditions for various kinds of convergence and asymptotic normality. We propose a method of reducing the negative bias and edge effects, illustrated by some simulations.
We present a method for estimating the edge of a two-dimensional
bounded set, given a finite random set of points drawn from the interior.
The estimator is based both on a Parzen-Rosenblatt kernel and
extreme values of point processes. We give conditions
for various kinds of convergence and asymptotic normality.
We propose a method of reducing the negative bias and edge effects,
illustrated by some simulations.
We consider the high order moments estimator of the frontier of a random pair, introduced by [S. Girard, A. Guillou and G. Stupfler, 116 (2013) 172–189]. In the present paper, we show that this estimator is strongly uniformly consistent on compact sets and its rate of convergence is given when the conditional cumulative distribution function belongs to the Hall class of distribution functions.
In this paper, a new supervised classification method dedicated to binary predictors is proposed. Its originality is to combine a model-based classification rule with similarity measures thanks to the introduction of new family of exponential kernels. Some links are established between existing similarity measures when applied to binary predictors. A new family of measures is also introduced to unify some of the existing literature. The performance of the new classification method is illustrated...
Download Results (CSV)