We classify weights which map reverse Hölder weight spaces to other reverse Hölder weight spaces under pointwise multiplication. We also give some fairly general examples of weights satisfying weak reverse Hölder conditions.
For every metric space (X, d) and origin o ∈ X, we show the inequality I o(x, y) ≤ 2d o(x, y), where I o(x, y) = d(x, y)/d(x, o)d(y, o) is the metric space inversion semimetric, d o is a metric subordinate to I o, and x, y ∈ X o The constant 2 is best possible.
We show that for n ≥ 5, a length space (X; d) satisfies a rough n-point condition if and only if it is rough CAT(0). As a consequence, we show that the class of rough CAT(0) spaces is closed under reasonably general limit processes such as pointed and unpointed Gromov-Hausdorff limits and ultralimits.
We investigate geometric conditions related to Hölder imbeddings, and show, among other things, that the only bounded Euclidean domains of the form U x V that are quasiconformally equivalent to inner uniform domains are inner uniform domains.
We construct a sequence of doubling measures, whose doubling constants tend to 1, all for which kill a G set of full Lebesgue measure.
Let be a relatively closed subset of a Euclidean domain . We investigate when solutions to certain elliptic equations on are restrictions of solutions on all of . Specifically, we show that if is not too large, and has a suitable decay rate near , then can be so extended.
We obtain (weighted) Poincaré type inequalities for vector fields satisfying the Hörmander condition for p < 1 under some assumptions on the subelliptic gradient of the function. Such inequalities hold on Boman domains associated with the underlying Carnot- Carathéodory metric. In particular, they remain true for solutions to certain classes of subelliptic equations. Our results complement the earlier results in these directions for p ≥ 1.
Download Results (CSV)