On the nonexistence of bilipschitz parametrizations and geometric problems about A-weights.
How can one recognize when a metric space is bilipschitz equivalent to an Euclidean space? One should not take the abstraction of metric spaces too seriously here; subsets of R are already quite interesting. It is easy to generate geometric conditions which are necessary for bilipschitz equivalence, but it is not clear that such conditions should ever be sufficient. The main point of this paper is that the optimistic conjectures about the existence of bilipschitz parametrizations are wrong. In other...