This is a report on recent results with A. Hassell on quantum ergodicity of boundary traces of eigenfunctions on domains with ergodic billiards, and of work in progress with Hassell and Sogge on norms of boundary traces. Related work by Burq, Grieser and Smith-Sogge is also discussed.
This talk will describe some results on the inverse spectral problem on a compact riemannian manifold (possibly with boundary) which are based on V. Guillemin's strategy of normal forms. It consists of three steps : first, put the wave group into a normal form around each closed geodesic. Second, determine the normal form from the spectrum of the laplacian. Third, determine the metric from the normal form. We will try to explain all three steps and to illustrate with simple examples such as surfaces...
The space of Kähler metrics in a fixed Kähler class on a projective Kähler manifold is an infinite dimensional symmetric space whose geodesics are solutions of a homogeneous complex Monge-Ampère equation in , where is an annulus. Phong-Sturm have proven that the Monge-Ampère geodesic of Kähler potentials of may be approximated in a weak sense by geodesics of the finite dimensional symmetric space of Bergman metrics of height . In this article we prove that in in the case of...
We determine the asymptotics of the joint eigenfunctions of the torus action on a toric
Kähler variety. Such varieties are models of completely integrable systems in complex
geometry. We first determine the pointwise asymptotics of the eigenfunctions, which show
that they behave like Gaussians centered at the corresponding classical torus. We then
show that there is a universal Gaussian scaling limit of the distribution function near
its center. We also determine the limit...
Download Results (CSV)