Currently displaying 1 – 9 of 9

Showing per page

Order by Relevance | Title | Year of publication

On some properties of the upper central series in Leibniz algebras

Leonid A. KurdachenkoJavier OtalIgor Ya. Subbotin — 2019

Commentationes Mathematicae Universitatis Carolinae

This article discusses the Leibniz algebras whose upper hypercenter has finite codimension. It is proved that such an algebra L includes a finite dimensional ideal K such that the factor-algebra L / K is hypercentral. This result is an extension to the Leibniz algebra of the corresponding result obtained earlier for Lie algebras. It is also analogous to the corresponding results obtained for groups and modules.

Page 1

Download Results (CSV)