The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 20 of 27

Showing per page

Order by Relevance | Title | Year of publication

Fibonacci numbers and Fermat's last theorem

Zhi-Wei Sun — 1992

Acta Arithmetica

Let Fₙ be the Fibonacci sequence defined by F₀=0, F₁=1, F n + 1 = F + F n - 1 ( n 1 ) . It is well known that F p - ( 5 / p ) 0 ( m o d p ) for any odd prime p, where (-) denotes the Legendre symbol. In 1960 D. D. Wall [13] asked whether p ² | F p - ( 5 / p ) is always impossible; up to now this is still open. In this paper the sum k r ( m o d 10 ) n k is expressed in terms of Fibonacci numbers. As applications we obtain a new formula for the Fibonacci quotient F p - ( 5 / p ) / p and a criterion for the relation p | F ( p - 1 ) / 4 (if p ≡ 1 (mod 4), where p ≠ 5 is an odd prime. We also prove that the affirmative answer to...

On sums of binomial coefficients modulo p²

Zhi-Wei Sun — 2012

Colloquium Mathematicae

Let p be an odd prime and let a be a positive integer. In this paper we investigate the sum k = 0 p a - 1 ( h p a - 1 k ) ( 2 k k ) / m k ( m o d p ² ) , where h and m are p-adic integers with m ≢ 0 (mod p). For example, we show that if h ≢ 0 (mod p) and p a > 3 , then k = 0 p a - 1 ( h p a - 1 k ) ( 2 k k ) ( - h / 2 ) k ( ( 1 - 2 h ) / ( p a ) ) ( 1 + h ( ( 4 - 2 / h ) p - 1 - 1 ) ) ( m o d p ² ) , where (·/·) denotes the Jacobi symbol. Here is another remarkable congruence: If p a > 3 then k = 0 p a - 1 ( p a - 1 k ) ( 2 k k ) ( - 1 ) k 3 p - 1 ( p a / 3 ) ( m o d p ² ) .

The tangent function and power residues modulo primes

Zhi-Wei Sun — 2023

Czechoslovak Mathematical Journal

Let p be an odd prime, and let a be an integer not divisible by p . When m is a positive integer with p 1 ( mod 2 m ) and 2 is an m th power residue modulo p , we determine the value of the product k R m ( p ) ( 1 + tan ( π a k / p ) ) , where R m ( p ) = { 0 < k < p : k is an m th power residue modulo p } . In particular, if p = x 2 + 64 y 2 with x , y , then k R 4 ( p ) 1 + tan π a k p = ( - 1 ) y ( - 2 ) ( p - 1 ) / 8 .

Page 1 Next

Download Results (CSV)