Resonant problem for a class of bvps on the half-line.
The existence of a traveling wave with special properties to modified KdV and BKdV equations is proved. Nonlinear terms in the equations are defined by means of a function f of an unknown u satisfying some conditions.
The solvability of second order differential systems with the classical separated or periodic boundary conditions is considered. The proofs use special classes of curvature bound sets or bound sets together with the simplest version of the Leray-Schauder continuation theorem. The special cases where the bound set is a ball, a parallelotope or a bounded convex set are considered.
A couple () of lower and upper slopes for the resonant second order boundary value problem with increasing on such that , is a couple of functions such that for all , in the stripe and . It is proved that the existence of such a couple implies the existence and localization of a solution to the boundary value problem. Multiplicity results are also obtained.
Page 1