The paper presents a theory of Fourier transforms of bounded holomorphic functions defined in sectors. The theory is then used to study singular integral operators on star-shaped Lipschitz curves, which extends the result of Coifman-McIntosh-Meyer on the -boundedness of the Cauchy integral operator on Lipschitz curves. The operator theory has a counterpart in Fourier multiplier theory, as well as a counterpart in functional calculus of the differential operator 1/i d/dz on the curves.
Fueter's result (see [6,8]) on inducing quaternionic regular functions from holomorphic functions of a complex variable is extended to Euclidean spaces . It is then proved to be consistent with M. Sce's generalization for being odd integers [6].
The aim of this paper is to study singular integrals T generated by holomorphic kernels defined on a natural neighbourhood of the set , where is a star-shaped Lipschitz curve, . Under suitable conditions on F and z, the operators are given by (1) We identify a class of kernels of the stated type that give rise to bounded operators on . We establish also transference results relating the boundedness of kernels on closed Lipschitz curves to corresponding results on periodic, unbounded curves.
In the Fourier theory of functions of one variable, it is common to extend a function and its Fourier transform holomorphically to domains in the complex plane C, and to use the power of complex function theory. This depends on first extending the exponential function eixξ of the real variables x and ξ to a function eizζ which depends holomorphically on both the complex variables z and ζ .
Our thesis is this. The natural analog in higher dimensions...
We generalize the notions of harmonic conjugate functions and Hilbert transforms to higher-dimensional euclidean spaces, in the setting of differential forms and the Hodge-Dirac system. These harmonic conjugates are in general far from being unique, but under suitable boundary conditions we prove existence and uniqueness of conjugates. The proof also yields invertibility results for a new class of generalized double layer potential operators on Lipschitz surfaces and boundedness of related Hilbert...
Download Results (CSV)