The divisor problem for binary cubic forms
We investigate the average order of the divisor function at values of binary cubic forms that are reducible over and discuss some applications.
We investigate the average order of the divisor function at values of binary cubic forms that are reducible over and discuss some applications.
For any number field k, upper bounds are established for the number of k-rational points of bounded height on non-singular del Pezzo surfaces defined over k, which are equipped with suitable conic bundle structures over k.
Nous étudions le comportement asymptotique du nombre de variétés dans une certaine classe ne satisfaisant pas le principe de Hasse. Cette étude repose sur des résultats récemment obtenus par Colliot-Thélène [].
The Manin conjecture is established for a split singular del Pezzo surface of degree four, with singularity type .
Page 1