On Manin's conjecture for a certain singular cubic surface

Régis de La Bretèche; Tim D. Browning; Ulrich Derenthal

Annales scientifiques de l'École Normale Supérieure (2007)

  • Volume: 40, Issue: 1, page 1-50
  • ISSN: 0012-9593

How to cite

top

de La Bretèche, Régis, Browning, Tim D., and Derenthal, Ulrich. "On Manin's conjecture for a certain singular cubic surface." Annales scientifiques de l'École Normale Supérieure 40.1 (2007): 1-50. <http://eudml.org/doc/82709>.

@article{deLaBretèche2007,
author = {de La Bretèche, Régis, Browning, Tim D., Derenthal, Ulrich},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {singular surface; asymptotic formula},
language = {eng},
number = {1},
pages = {1-50},
publisher = {Elsevier},
title = {On Manin's conjecture for a certain singular cubic surface},
url = {http://eudml.org/doc/82709},
volume = {40},
year = {2007},
}

TY - JOUR
AU - de La Bretèche, Régis
AU - Browning, Tim D.
AU - Derenthal, Ulrich
TI - On Manin's conjecture for a certain singular cubic surface
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2007
PB - Elsevier
VL - 40
IS - 1
SP - 1
EP - 50
LA - eng
KW - singular surface; asymptotic formula
UR - http://eudml.org/doc/82709
ER -

References

top
  1. [1] Batyrev V.V., Tschinkel Y., Tamagawa numbers of polarized algebraic varieties, Astérisque251 (1998) 299-340. Zbl0926.11045MR1679843
  2. [2] de la Bretèche R., Sur le nombre de points de hauteur bornée d'une certaine surface cubique singulière, Astérisque251 (1998) 51-77. Zbl0969.14014
  3. [3] de la Bretèche R., Browning T.D., On Manin's conjecture for singular del Pezzo surfaces of degree four, I, Michigan Math. J., in press. Zbl1132.14019
  4. [4] de la Bretèche R., Browning T.D., On Manin's conjecture for singular del Pezzo surfaces of degree four, II, Math. Proc. Camb. Phil. Soc., in press. Zbl1132.14020
  5. [5] Browning T.D., The density of rational points on a certain singular cubic surface, J. Number Theory119 (2006) 242-283. Zbl1119.11034MR2250046
  6. [6] Bruce J.W., Wall C.T.C., On the classification of cubic surfaces, J. London Math. Soc.19 (1979) 245-256. Zbl0393.14007MR533323
  7. [7] Chambert-Loir A., Tschinkel Y., On the distribution of points of bounded height on equivariant compactifications of vector groups, Invent. Math.148 (2002) 421-452. Zbl1067.11036MR1906155
  8. [8] Derenthal U., Manin's conjecture for a certain singular cubic surface, math.NT/0504016. 
  9. [9] Franke J., Manin Y.I., Tschinkel Y., Rational points of bounded height on Fano varieties, Invent. Math.95 (1989) 421-435. Zbl0674.14012MR974910
  10. [10] Hassett B., Tschinkel Y., Universal torsors and Cox rings, in: Arithmetic of Higher-Dimensional Algebraic Varieties, Palo Alto, CA, 2002, Progr. Math., vol. 226, Birkhäuser, Basel, 2004, pp. 149-173. Zbl1077.14046MR2029868
  11. [11] Heath-Brown D.R., The density of rational points on cubic surfaces, Acta Arith.79 (1997) 17-30. Zbl0863.11021MR1438113
  12. [12] Heath-Brown D.R., The density of rational points on Cayley's cubic surface, in: Proceedings of the Session in Analytic Number Theory and Diophantine Equations, Bonner Math. Schriften, vol. 360, Univ. Bonn, Bonn, 2003. Zbl1060.11038MR2075628
  13. [13] Ivić A., The Riemann Zeta-Function, John Wiley & Sons Inc., New York, 1985. Zbl0556.10026MR792089
  14. [14] Loxton J.H., Vaughan R.C., The estimation of complete exponential sums, Canad. Math. Bull.28 (1985) 440-454. Zbl0575.10033MR812119
  15. [15] Peyre E., Hauteurs et nombres de Tamagawa sur les variétés de Fano, Duke Math. J.79 (1995) 101-218. Zbl0901.14025MR1340296
  16. [16] Salberger P., Tamagawa measures on universal torsors and points of bounded height on Fano varieties, Astérisque251 (1998) 91-258. Zbl0959.14007MR1679841
  17. [17] Tenenbaum G., Introduction to Analytic and Probabilistic Number Theory, translated from the second French ed., Cambridge Studies in Advanced Mathematics, vol. 46, Cambridge Univ. Press, Cambridge, UK, 1995. Zbl0831.11001MR1342300
  18. [18] Titchmarsh E.C., The Theory of the Riemann Zeta-Function, second ed., revised by D.R. Heath-Brown, Oxford Univ. Press, Oxford, UK, 1986. Zbl0601.10026MR882550
  19. [19] Vaaler J.D., Some extremal functions in Fourier analysis, Bull. Amer. Math. Soc.12 (1985) 183-216. Zbl0575.42003MR776471
  20. [20] Vaughan R.C., The Hardy–Littlewood Method, Cambridge Tracts in Mathematics, vol. 125, second ed., Cambridge Univ. Press, Cambridge, UK, 1997. Zbl0455.10034
  21. [21] Weil A., Sur les courbes algébriques et les variétés qui s'en déduisent, Pub. Inst. Math. Strasbourg7 (1948) 1-85. Zbl0036.16001MR27151

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.