Variational fractals
We describe some recent results for boundary value problems with fractal boundaries. Our aim is to show that the numerical approach to boundary value problems, so much cherished and in many ways pioneering developed by Enrico Magenes, takes on a special relevance in the theory of boundary value problems in fractal domains and with fractal operators. In this theory, in fact, the discrete numerical analysis of the problem precedes the, and indeed give rise to, the asymptotic continuous problem, reverting...
We prove local embeddings of Sobolev and Morrey type for Dirichlet forms on spaces of homogeneous type. Our results apply to some general classes of selfadjoint subelliptic operators as well as to Dirichlet operators on certain self-similar fractals, like the Sierpinski gasket. We also define intrinsic BV spaces and perimeters and prove related isoperimetric inequalities.
We give a Wiener criterion for the continuity of an obstacle problem relative to an elliptic degenerate problem with a weight in the class.
We give a Wiener criterion for the continuity of an obstacle problem relative to an elliptic degenerate problem with a weight in the class.
Page 1