The Gluck and Ziller problem with the euclidean metric
Soient une surface de l’espace euclidien et un ensemble de triangles euclidiens formant une approximation linéaire par morceaux de autour d’un point la au sommet de est, par définition, le quotient du défaut angulaire par la somme des aires des triangles ayant comme sommet. Un problème naturel est d’estimer la différence entre cette courbure discrète et la courbure lisse de en Nous présentons dans cet article des résultats obtenus dans [], [], [] et qui...
A strictly short embedding is an embedding of a Riemannian manifold into an Euclidean space that strictly shortens distances. From such an embedding, the Nash-Kuiper process builds a sequence of maps converging toward an isometric embedding. In that paper, we describe this Nash-Kuiper process in the case of curves. We state an explicit formula for the limit normal map and perform its Fourier series expansion. We then adress the question of Holder regularity of the limit map.
Page 1