This paper is a contribution to the axiomatic approach to geometric objects. A collection of a manifold M, a topological space N, a group homomorphism E: Diff(M) → Homeo(N) and a function π: N → M is called a quasi-natural bundle if (1) π ∘ E(f) = f ∘ π for every f ∈ Diff(M) and (2) if f,g ∈ Diff(M) are two diffeomorphisms such that f|U = g|U for some open subset U of M, then E(f)|π^{-1}(U) = E(g)|π^{-1}(U). We give conditions which ensure that π: N → M is continuous. In particular, if (M,N,E,π)...
A complete description is given of all product preserving gauge bundle functors F on vector bundles in terms of pairs (A,V) consisting of a Weil algebra A and an A-module V with . Some applications of this result are presented.
Let be the r-jet prolongation of the cotangent bundle of an n-dimensional manifold M and let be the dual vector bundle. For natural numbers r and n, a complete classification of all linear natural operators lifting 1-forms from M to 1-forms on is given.
We study the problem of how a map f:M → ℝ on an n-manifold M induces canonically an affinor on the vector r-tangent bundle over M. This problem is reflected in the concept of natural operators . For integers r ≥ 1 and n ≥ 2 we prove that the space of all such operators is a free (r+1)²-dimensional module over and we construct explicitly a basis of this module.
Let A be a Weil algebra and V be an A-module with dim V < ∞. Let E → M be a vector bundle and let TE → TM be the vector bundle corresponding to (A,V). We construct canonically a linear semibasic tangent valued p-form Tφ : T E → ΛT*TM ⊗ TTE on TE → TM from a linear semibasic tangent valued p-form φ : E → ΛT*M ⊗ TE on E → M. For the Frolicher-Nijenhuis bracket we prove that [[Tφ, Tψ]] = T ([[φ,ψ]]) for any linear semibasic tangent valued p- and q-forms φ and ψ on E → M. We apply these results...
Using a general connection Γ on a fibred manifold p:Y → M and a torsion free classical linear connection ∇ on M, we distinguish some “special” fibred coordinate systems on Y, and then we construct a general connection on Fp:FY → FM for any vector bundle functor F: ℳ f → of finite order.
Let 𝓟𝓑 be the category of principal bundles and principal bundle homomorphisms. We describe completely the product preserving gauge bundle functors (ppgb-functors) on 𝓟𝓑 and their natural transformations in terms of the so-called admissible triples and their morphisms. Then we deduce that any ppgb-functor on 𝓟𝓑 admits a prolongation of principal connections to general ones. We also prove a "reduction" theorem for prolongations of principal connections into principal ones by means of Weil functors....
A classification of all -natural operators lifting p-dimensional distributions D ⊂ TM on m-manifolds M to q-dimensional distributions A(D) ⊂ TT*M on the cotangent bundle T*M is given.
We present a complete description of all product preserving bundle functors on the category ℱol of all foliated manifolds and their leaf respecting maps in terms of homomorphisms of Weil algebras.
We present a complete description of all fiber product preserving gauge bundle functors F on the category of vector bundles with m-dimensional bases and vector bundle maps with local diffeomorphisms as base maps. Some corollaries of this result are presented.
All natural operators A transforming a linear vector field X on a vector bundle E into a vector field A(X) on the r-jet prolongation of E are given. Similar results are deduced for the r-jet prolongations and in place of .
Let Y → M be a fibred manifold with m-dimensional base and n-dimensional fibres. Let r, m,n be positive integers. We present a construction of rth order holonomic connections on Y → M from general connections Γ:Y → J¹Y on Y → M by means of torsion free classical linear connections ∇ on M. Then we prove that any construction B of rth order holonomic connections on Y → M from general connections Γ:Y → J¹Y on Y → M by means of torsion free classical linear connections ∇ on M is equal to . Applying...
A classification of natural liftings of foliations to the tangent bundle is given.
Let and be two natural bundles over -manifolds. We prove that if is of type (I) and is of type (II), then any natural differential operator of into is of order 0. We give examples of natural bundles of type (I) or of type (II). As an application of the main theorem we determine all natural differential operators between some natural bundles.
In this paper are determined all natural transformations of the natural bundle of -covelocities over -manifolds into such a linear natural bundle over -manifolds which is dual to the restriction of a linear bundle functor, if .
A classification of natural transformations transforming functions (or vector fields) to functions on such natural bundles which are restrictions of bundle functors is given.
Let and be fiber product preserving bundle functors on the category of fibred manifolds with -dimensional bases and fibred maps covering local diffeomorphisms. We define a quasi-morphism to be a -invariant algebra homomorphism with . The main result is that there exists an -natural transformation depending on a classical linear connection on the base of if and only if there exists a quasi-morphism . As applications, we study existence problems of symmetrization (holonomization)...
We prove that the problem of finding all -natural operators lifting classical linear connections on -manifolds into classical linear connections on the -th order cotangent bundle of can be reduced to the well known one of describing all -natural operators sending classical linear connections on -manifolds into tensor fields of type on .
Let be the category of all principal fibred bundles with -dimensional bases and their principal bundle homomorphisms covering embeddings. We introduce the concept of the so called -systems and describe all gauge bundle functors on of order by means of the -systems. Next we present several interesting examples of fiber product preserving gauge bundle functors on of order . Finally, we introduce the concept of product preserving -systems and describe all fiber product preserving gauge...
We introduce the concept of modified vertical Weil functors on the category of fibred manifolds with -dimensional bases and their fibred maps with embeddings as base maps. Then we describe all fiber product preserving bundle functors on in terms of modified vertical Weil functors. The construction of modified vertical Weil functors is an (almost direct) generalization of the usual vertical Weil functor. Namely, in the construction of the usual vertical Weil functors, we replace the usual Weil...
Download Results (CSV)