The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 20 of 4270

Showing per page

Order by Relevance | Title | Year of publication

Quasianalytic functions in the sense of Bernstein

W. Pleśniak — 1977

CONTENTS1. Introduction................................................................................................................ 32. The extremal function.............................................................................................. 83. Some lemmas on polynomials............................................................................. 124. Category theorems in topological groups........................................................... 165. Best approximation in Banach...

Categories, groupoids, pseudogroups and analytical structures

W. Waliszewski — 1965

CONTENTSIntroduction................................................................................................................................................. 3I. TERMS AND NOTATION....................................................................................................................... 5II. GROUPOIDS AND CATEGORIES...................................................................................................... 61. The notion of groupoid............................................................................................................................

Metric generalizations of Banach algebras

W. Żelazko — 1965

CONTENTSPRELIMINARIES§ 0. Introduction.......................................................................................................................................................................3§ 1. Definitions and notation.................................................................................................................................................5Chapter ILOCALLY BOUNDED ALGEBRAS§ 2. Basic facts and examples..............................................................................................................................................6§...

Lattices with real numbers as additive operators

W. Holsztyński — 1969

CONTENTSIntroduction............................... 5Paragraph 1............................... 6Paragraph 2............................... 13Paragraph 3............................... 21Paragraph 4............................... 27Paragraph 5............................... 36Paragraph 6............................... 42Paragraph 7............................... 52Paragraph 8............................... 60Paragraph 9............................... 70References....................................

Unitary dilations of contraction operators

W. Mlak — 1965

ContentsPreliminaries.................................................................................... 31. Notation and definitions............................................................. 62. Simple unitary dilations............................................................. 83. Dilation theorem.......................................................................... 124. Unitary dilation of a single contractions.................................. 225. Decomposition theorems............................................................

On the metamathematics of impredicative set theory

W. Marek — 1973

CONTENTSIntroduction....................................................................................... 50. Set theory M.................................................................................. 61. Reflection principles in M.......................................................... 122. The trees....................................................................................... 183. Ordinal trees. Constructibility in M........................................... 254. Minimal model...

Pre-supports of linear probability measures and linear Lusin measurable functionals

W. Słowikowski — 1972

CONTENTS1. Introduction, review of the results, examples...................................................................................52. Linear probability measures and their representations................................................................103. Linear Lusin measurable functionals...............................................................................................164. Pre-supports and a modification of the definition of the linear probability measure................235....

Page 1 Next

Download Results (CSV)