A minimization problem arising from prescribing scalar curvature functions.
Let be an integer part of and be the number of positive divisor of . Inspired by some results of M. Jutila (1987), we prove that for , where is the Euler constant and is the Piatetski-Shapiro sequence. This gives an improvement upon the classical result of this problem.
We consider functions , where is a smooth bounded domain, and is an integer. For all , such that , we prove that with , where is a smooth positive function which coincides with dist near , and denotes any partial differential operator of order .
Page 1