A note on generalized Gorenstein dimension.
In this note we show that for a -module, in particular, an almost -tilting module, over a ring with such that has finite flat dimension, the upper bound of the global dimension of can be estimated by the global dimension of and hence generalize the corresponding results in tilting theory and the ones in the theory of -modules. As an application, we show that for a finitely generated projective module over a VN regular ring , the global dimension of its endomorphism ring is not more...
Let be a dg--module, the endomorphism dg-algebra of . We know that if is a good silting object, then there exist a dg-algebra and a recollement among the derived categories of , of and of . We investigate the condition under which the induced dg-algebra is weak nonpositive. In order to deal with both silting and cosilting dg-modules consistently, the notion of weak silting dg-modules is introduced. Thus, similar results for good cosilting dg-modules are obtained. Finally, some...
Let be a semibrick in an extriangulated category. If is a -semibrick, then the Auslander-Reiten quiver of the filtration subcategory generated by is . If is a -cycle semibrick, then is .
Page 1