A total dominating set in a graph is a subset of such that each vertex of is adjacent to at least one vertex of . The total domination number of is the minimum cardinality of a total dominating set. A function is a signed dominating function (SDF) if the sum of its function values over any closed neighborhood is at least one. The weight of an SDF is the sum of its function values over all vertices. The signed domination number of is the minimum weight of an SDF on . In this paper...
In this paper, we study the monotone meta-Lindelöf property. Relationships between monotone meta-Lindelöf spaces and other spaces are investigated. Behaviors of monotone meta-Lindelöf -spaces in their linearly ordered extensions are revealed.
We prove that, assuming , if is a space with -calibre and a zeroset diagonal, then is submetrizable. This gives a consistent positive answer to the question of Buzyakova in Observations on spaces with zeroset or regular -diagonals, Comment. Math. Univ. Carolin. 46 (2005), no. 3, 469–473. We also make some observations on spaces with -calibre.
We prove that if is a first countable space with property and with a -diagonal then the cardinality of is at most . We also show that if is a first countable, DCCC, normal space then the extent of is at most .
We provide a necessary and sufficient condition under which a generalized ordered topological product (GOTP) of two GO-spaces is monotonically Lindelöf.
A topological space has a rank 2-diagonal if there exists a diagonal sequence on of rank , that is, there is a countable family of open covers of such that for each , . We say that a space satisfies the Discrete Countable Chain Condition (DCCC for short) if every discrete family of nonempty open subsets of is countable. We mainly prove that if is a DCCC normal space with a rank 2-diagonal, then the cardinality of is at most . Moreover, we prove that if is a first countable...
Download Results (CSV)