For every cardinal τ and every ordinal α, we construct a metrizable space and a strongly countable-dimensional compact space of weight τ such that , and each metrizable space X of weight τ such that D(X) ≤ α is homeomorphic to a subspace of and to a subspace of .
We construct a family of spaces with “nice” structure which is universal in the class of all compact metrizable spaces of large transfinite dimension , or, equivalently, of small transfinite dimension ; that is, the family consists of compact metrizable spaces whose transfinite dimension is , and every compact metrizable space with transfinite dimension is embeddable in a space of the family. We show that the least possible cardinality of such a universal family is equal to the least possible...
R. Pol has shown that for every countable ordinal α, there exists a universal space for separable metrizable spaces X with ind X = α . We prove that for every countable limit ordinal λ, there is no universal space for separable metrizable spaces X with Ind X = λ. This implies that there is no universal space for compact metrizable spaces X with Ind X = λ. We also prove that there is no universal space for compact metrizable spaces X with ind X = λ.
For every countable non-limit ordinal α we construct an α-dimensional Cantor ind-manifold, i.e., a compact metrizable space such that , and no closed subset L of with ind L less than the predecessor of α is a partition in . An α-dimensional Cantor Ind-manifold can be constructed similarly.
Download Results (CSV)