Fine Boundary Limits of Finely Harmonic Functions.
Several properties of balayage of measures in harmonic spaces are studied. In particular, characterisations of thinness of subsets are given. For the heat equation the following result is obtained: suppose that is given the presheaf of solutions of and is a subset of satisfying for arbitrarily small. Then is thin at 0 if and only if is polar. Similar result for the Laplace equation. At last the reduced of measures is defined and several...
This paper is devoted to a study of harmonic mappings of a harmonic space on a harmonic space which are related to a family of harmonic mappings of into . In this way balayage in may be reduced to balayage in . In particular, a subset of is polar if and only if is polar. Similar result for thinness. These considerations are applied to the heat equation and the Laplace equation.
We construct the fundamental solution of for functions q with a certain integral space-time relative smallness, in particular for those satisfying a relative Kato condition. The resulting transition density is comparable to the Gaussian kernel in finite time, and it is even asymptotically equal to the Gaussian kernel (in small time) under the relative Kato condition. The result is generalized to arbitrary strictly positive and finite time-nonhomogeneous transition densities on measure spaces. We...
Page 1