Harnack inequalities for Schrödinger operators
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1999)
- Volume: 28, Issue: 3, page 413-470
- ISSN: 0391-173X
Access Full Article
topHow to cite
topHansen, Wolfhard. "Harnack inequalities for Schrödinger operators." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 28.3 (1999): 413-470. <http://eudml.org/doc/84384>.
@article{Hansen1999,
author = {Hansen, Wolfhard},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Harnack inequalities; Schrödinger operators},
language = {eng},
number = {3},
pages = {413-470},
publisher = {Scuola normale superiore},
title = {Harnack inequalities for Schrödinger operators},
url = {http://eudml.org/doc/84384},
volume = {28},
year = {1999},
}
TY - JOUR
AU - Hansen, Wolfhard
TI - Harnack inequalities for Schrödinger operators
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1999
PB - Scuola normale superiore
VL - 28
IS - 3
SP - 413
EP - 470
LA - eng
KW - Harnack inequalities; Schrödinger operators
UR - http://eudml.org/doc/84384
ER -
References
top- [AS82] M. Aizenman - B. Simon, Brownian motion and Harnack's inequality for Schrödinger operators, Comm. Pure Appl. Math.35 (1982), 209-271. Zbl0459.60069MR644024
- [BH86] J. Bliedtner - W. Hansen, "Potential Theory - An Analytic and Probabilistic Approach to Balayage", Universitext. Springer, Berlin-Heidelberg-New York- Tokyo, 1986. Zbl0706.31001MR850715
- [BH91]] N. Bouleau - F. Hirsch, "Dirichlet Forms and Analysis on Wiener Space", vol. 14 of Studies in Mathematics. de Gruyter, Berlin - New York, 1991. Zbl0748.60046MR1133391
- [BHH85] A. Boukricha - W. Hansen - H. Hueber, Continuous solutions of the generalized Schrödinger equation and perturbation of harmonic spaces, BiBoS (Research Center Bielefeld-Bochum-Stochastics, Bielefeld University). Preprint 54 (1985), 1-70. Zbl0566.31005MR887788
- [BHH87] A. Boukricha - W. Hansen - H. Hueber, Continuous solutions of the generalized Schrödinger equation and perturbation of harmonic spaces, Exposition. Math.5 (1987), 97-135. Zbl0659.35025MR887788
- [BM68] N. Boboc - P. Mustaţă, "Espaces harmoniques associés aux opérateurs différentiels linéaires du second ordre de type elliptique" , Lecture Notes in Mathematics68, Springer, Berlin - New York, 1968. Zbl0167.40301MR241681
- [Bon69] J.M. Bony, Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier (Grenoble) 19 (1969), 277-304. Zbl0176.09703MR262881
- [Bon70] J.M. Bony, Opérateurs elliptiques dégénérés associés aux axiomatiques de la théorie du potentiel, In: "Potential Theory" (CIME, 1° Ciclo, Stresa 1969)Edizioni Cremonese, Roma1970, pp. 69-119. Zbl0205.10704MR277744
- [Bou79] A. Boukricha, Das Picard-Prinzip und verwandte Fragen bei Störung von harmonischen Räumen, Math. Ann.239 (1979), 247-270. Zbl0377.31011MR522783
- [CC72] C. Constantinescu - A. Cornea, "Potential Theory on Harmonic Spaces", Grundlehren d. math. Wiss. Springer, Berlin - Heidelberg - New York, 1972. Zbl0248.31011MR419799
- [CFG86] F. Chiarenza - E. Fabes - N. Garofalo, Harnack's inequality for Schrödinger operators and the continuity of solutions, Proc. Amer. Math. Soc.98 (1986),415-425. Zbl0626.35022MR857933
- [CFZ88] M. Cranston - E. Fabes - Z. Zhao, Conditional gauge and potential theory for the Schrödinger operator, Trans. Amer. Math. Soc.307 (1988), 171-194. Zbl0652.60076MR936811
- [CGL93] G. Citti - N. Garofalo - E. Lanconelli, Harnack's inequality for sum of squares of vector fields plus a potential, Amer. J. Math.115 (1993), 699-734. Zbl0795.35018MR1221840
- [DL54] J. Deny - J.L. Lions, Les espaces du type Beppo-Levi, Ann. Inst. Fourier (Grenoble) 5 (1953/54), 305-370. Zbl0065.09903MR74787
- [dLP90] A. De La Pradelle, Sur les perturbations d'espaces harmoniques, Acad. Roy. Belg. Bull. Cl. Sci. (6) 1 (1990), 201-212. Zbl0770.31010MR1146274
- [dLP99] A. De La Pradelle, "Sur les perturbations d'espaces harmoniques" Erratum, Acad. Roy. Belg. Bull. Cl. Sci. (6) (1999).
- [FdLP88] D. Feyel - A. De La Pradelle, Étude de l'équation 1/2Δu - uμ = 0 où μ est une mesure positive, Ann. Inst. Fourier (Grenoble) 38 (1988), 199-218. Zbl0645.35018
- [FOT94] M. Fukushima - Y. Oshima - M. Takeda, "Dirichlet Forms and Symmetric Markov Processes", Studies in Mathematics. de Gruyter, Berlin - New York, 1994. Zbl0838.31001MR1303354
- [FS82] G.B. Folland - E.M. Stein, "Hardy Spaces on Homogeneous Groups", Mathematical Notes28. Princeton University Press, Princeton, New Jersey, 1982. Zbl0508.42025MR657581
- [Han81 ] W. Hansen, Semi-polar sets and quasi-balayage, Math. Ann.257 (1981), 495-517. Zbl0458.31008MR1513285
- [Han93] W. Hansen, A note on continuous solutions of the Schrödinger equation, Proc. Amer. Math. Soc. (2) 117 (1993), 381-384. Zbl0770.31008MR1107921
- [Han99] W. Hansen, Potentials with given oscillations, Exposition. Math. (1999), to appear. Zbl0937.31007MR1706216
- [Her62] R.M. Hervé., Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel, Ann. Inst. Fourier (Grenoble) 12 (1962). 415-517. Zbl0101.08103MR139756
- [Her68] R.-M. Hervé - M. Hervé, Les fonctions surharmoniques associées à un opérateur elliptique du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble) 19 (1968), 305-359. Zbl0176.09801MR261027
- [Her72] R.-M. Hervé - M. Hervé, Les fonctions surharmoniques dans l'axiomatique de M. Brelot associées à un opérateur elliptique dégénéré, Ann. Inst. Fourier (Grenoble) 22 (1972), 131-145. Zbl0224.31014MR377092
- [Her85] R.-M. Hervé, Perturbation d' un espace harmonique de M. Brelot. Recherche d' une bijection entre potentiels et potentiels perturbés, Publication de l'Université de Paris75 (1985). Zbl0608.31006
- [Her87] R.-M. Hervé, Inégalité de Harnack pour un faisceau perturbé et théorie adjointe, Publication de l'Université de ParisVI81 (1987).
- [HH87] W. Hansen - H. Hueber, The Dirichlet problem for sublaplacians on nilpotent Lie groups - geometric criteria for regularity, Math. Ann.276 (1987), 537-547. Zbl0601.31007MR879533
- [HK90] A.M. Hinz - H. Kalf, Subsolution estimates and Harnack's inequality for Schrödinger operators, J. Reine Angew. Math.404 (1990), 118-134. Zbl0779.35026MR1037432
- [HM90] W. Hansen - Z.M. Ma, Perturbations by differences of unbounded potentials, Math. Ann.287 (1990), 553-569. Zbl0685.31005MR1066814
- [HS82] H. Hueber - M. Sieveking, Uniform bounds for Green functions on C1,1-domains, Ann. Inst. Fourier (Grenoble) 32 (1982), 105-117. Zbl0465.35028MR658944
- [HS84] H. Hueber - M. Sieveking, Quotients of Green functions on R n, Math. Ann.269 (1984), 263-278. Zbl0535.31004MR759112
- [Hue88] H. Hueber, The domination principle for the sum of squares of vector fields, Exposition. Math.6 (1988), 183-184. Zbl0655.31008MR938182
- [Keu90] J.-M. Keuntje, "Störung harmonischer Räume mit Differenzen beschränkter Potentiale", PhD thesis, Universität Bielefeld, 1990. Zbl0744.31006
- [Kro88] P. Kroeger, Harmonic spaces associated with parabolic and elliptic differential operators, Math. Ann.285 (1988), 393-403. Zbl0664.31011MR1019709
- [KS93] P. Kröger - K.-Th. Sturm, Hölder continuity of normalized solutions of the Schrödinger equation, Math. Ann.297 (1993), 663-670. Zbl0822.35033MR1245411
- [Kur94] K. Kurata, Continuity and Harnack's inequality for solutions of elliptic partial differential equations of second order, Indiana Univ. Math. J.43 (1994), 411-440. Zbl0805.35017MR1291523
- [Kuw96] H. Kuwano, On Harnack's inequality for some degenerate elliptic equations, Bull. Fukuoka Univ. Ed. III45 (1996), 1-7. Zbl0887.35010MR1435785
- [LM97] M.R. Lancia - M.V. Marchi, Harnack inequalities for nonsymmetric operators of Hörmander type with discontinuous coefficients, Adv. Math. Sci. Appl.7 (1997), 833-857. Zbl0890.35003MR1476279
- [Moh98] A. Mohammed, Harnack's principle for some non-divergence structure elliptic operators, Comm. Partial Differential Equations23 (1998), 287-306. Zbl0897.35022MR1608528
- [Nak96] M Nakai, Brelot spaces of Schrödinger equations, J. Math. Soc. Japan48 (1996), 275-298. Zbl0864.31007MR1376082
- [Net75] I. Netuka, Continuity and maximum principle for potentials of signed measures, Czechoslovak Math. J.25 (1975), 309-316. Zbl0309.31019MR382690
- [NSW85] A. Nagel - E.M. Stein - S. Wainger, Balls and metrics defined by vector fields I: Basic properties, Acta Math.155 (1985), 103-147. Zbl0578.32044MR793239
- [SC84] A. Sanchez-Calle, Fundamental solutions and geometry of the sum of squares of vector fields, Invent. Math.78 (1984), 143-160. Zbl0582.58004MR762360
- [Sim90] C.G. Simader, An elementary proof of Harnack's inequality for Schrödinger operators and related topics, Math. Z.203 (1990), 129-152. Zbl0697.35017MR1030712
- [Zah] M. Zahid, Inégalité de Harnack et perturbation d'espaces harmoniques de Brelot par des mesures quelconques, Extracta Math., to appear.
- [Zah96] M. Zahid, Fonctionelle additive et ellipticité, Extracta Math.11 (1996), 288-300. Zbl0888.31006MR1437453
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.