The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

α-time fractional brownian motion: PDE connections and local times

Erkan NaneDongsheng WuYimin Xiao — 2012

ESAIM: Probability and Statistics

For 0 <  ≤ 2 and 0 <  < 1, an -time fractional Brownian motion is an iterated process  =  {() = (()) ≥ 0}  obtained by taking a fractional Brownian motion  {() ∈ ℝ} with Hurst index 0 <  < 1 and replacing the time parameter with a strictly -stable Lévy process {() ≥ 0} in ℝ independent of {() ∈ R}. It is shown that such processes have natural connections to partial differential equations and, when is a stable subordinator, can arise as scaling limit of randomly...

α-time fractional Brownian motion: PDE connections and local times

Erkan NaneDongsheng WuYimin Xiao — 2012

ESAIM: Probability and Statistics

For 0 <  ≤ 2 and 0 <  < 1, an -time fractional Brownian motion is an iterated process  =  {() = (()) ≥ 0}  obtained by taking a fractional Brownian motion  {() ∈ ℝ} with Hurst index 0 <  < 1 and replacing the time parameter with a strictly -stable Lévy process {() ≥ 0} in ℝ independent of {() ∈ R}. It is shown that such processes have natural connections to partial differential equations and, when ...

Page 1

Download Results (CSV)