Soient un nombre premier et un corps -adique à corps résiduel parfait (par exemple une extension finie de ) dont l’indice de ramification absolue est noté . Afin d’étudier les « représentations semi-stables de -torsion » de , Breuil a défini pour tout entier positif plusieurs catégories de -modules filtrés de torsion. Dans cet article, nous décrivons la structure de ces catégories dans le cas général (seul le cas avait été étudié de façon systématique jusqu’à présent).
Fix a -adic field and denote by its absolute Galois group. Let be the extension of obtained by adding -th roots of a fixed uniformizer, and its absolute Galois group. In this article, we define a class of -adic torsion representations of , called. We prove that these representations are “explicitly” described by a certain category of linear algebraic objects. The results of this note should be considered as a first step in the understanding of the structure of quotient of two lattices...
Le but de cette note est de donner une démonstration complète du théorème 4.1 de [] qui a pour objet d’expliciter l’action de l’inertie modérée sur la semi-simplifiée modulo d’une certaine famille (assez restreinte) de représentations cristallines du groupe de Galois absolu d’un corps -adique . Lorsque n’est pas absolument ramifié, le calcul de cette action a déjà été accompli par Fontaine et Laffaille qui ont montré qu’elle est entièrement déterminée par les poids de Hodge-Tate de , au...
Download Results (CSV)