The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

On the bounds of Laplacian eigenvalues of k -connected graphs

Xiaodan ChenYaoping Hou — 2015

Czechoslovak Mathematical Journal

Let μ n - 1 ( G ) be the algebraic connectivity, and let μ 1 ( G ) be the Laplacian spectral radius of a k -connected graph G with n vertices and m edges. In this paper, we prove that μ n - 1 ( G ) 2 n k 2 ( n ( n - 1 ) - 2 m ) ( n + k - 2 ) + 2 k 2 , with equality if and only if G is the complete graph K n or K n - e . Moreover, if G is non-regular, then μ 1 ( G ) < 2 Δ - 2 ( n Δ - 2 m ) k 2 2 ( n Δ - 2 m ) ( n 2 - 2 n + 2 k ) + n k 2 , where Δ stands for the maximum degree of G . Remark that in some cases, these two inequalities improve some previously known results.

Note on a conjecture for the sum of signless Laplacian eigenvalues

Xiaodan ChenGuoliang HaoDequan JinJingjian Li — 2018

Czechoslovak Mathematical Journal

For a simple graph G on n vertices and an integer k with 1 k n , denote by 𝒮 k + ( G ) the sum of k largest signless Laplacian eigenvalues of G . It was conjectured that 𝒮 k + ( G ) e ( G ) + k + 1 2 , where e ( G ) is the number of edges of G . This conjecture has been proved to be true for all graphs when k { 1 , 2 , n - 1 , n } , and for trees, unicyclic graphs, bicyclic graphs and regular graphs (for all k ). In this note, this conjecture is proved to be true for all graphs when k = n - 2 , and for some new classes of graphs.

The extremal irregularity of connected graphs with given number of pendant vertices

Xiaoqian LiuXiaodan ChenJunli HuQiuyun Zhu — 2022

Czechoslovak Mathematical Journal

The irregularity of a graph G = ( V , E ) is defined as the sum of imbalances | d u - d v | over all edges u v E , where d u denotes the degree of the vertex u in G . This graph invariant, introduced by Albertson in 1997, is a measure of the defect of regularity of a graph. In this paper, we completely determine the extremal values of the irregularity of connected graphs with n vertices and p pendant vertices ( 1 p n - 1 ), and characterize the corresponding extremal graphs.

Page 1

Download Results (CSV)