The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We introduce the notion of a lazy 2-cocycle over a monoidal Hom-Hopf algebra and determine all lazy 2-cocycles for a class of monoidal Hom-Hopf algebras. We also study the extension of lazy 2-cocycles to a Radford Hom-biproduct.
Let be the category of Doi Hom-Hopf modules, be the category of A-Hom-modules, and F be the forgetful functor from to . The aim of this paper is to give a necessary and suffcient condition for F to be separable. This leads to a generalized notion of integral. Finally, applications of our results are given. In particular, we prove a Maschke type theorem for Doi Hom-Hopf modules.
We continue our study of the category of Doi Hom-Hopf modules introduced in [Colloq. Math., to appear]. We find a sufficient condition for the category of Doi Hom-Hopf modules to be monoidal. We also obtain a condition for a monoidal Hom-algebra and monoidal Hom-coalgebra to be monoidal Hom-bialgebras. Moreover, we introduce morphisms between the underlying monoidal Hom-Hopf algebras, Hom-comodule algebras and Hom-module coalgebras, which give rise to functors between the category of Doi Hom-Hopf...
The main purpose of the present paper is to study representations of BiHom-Hopf algebras. We first introduce the notion of BiHom-Hopf algebras, and then discuss BiHom-type modules, Yetter-Dinfeld modules and Drinfeld doubles with parameters. We get some new -monoidal categories via the category of BiHom-(co)modules and the category of BiHom-Yetter-Drinfeld modules. Finally, we obtain a center construction type theorem on BiHom-Hopf algebras.
Let be a nonempty open set in a metric space with . Define
where is the distance from to the boundary of . For every , is a metric. We study the sharp Lipschitz constants for the metric under Möbius transformations of the unit ball, the upper half space, and the punctured unit ball.
Download Results (CSV)