We introduce the notion of FI-mono-retractable modules which is a generalization of compressible modules. We investigate the properties of such modules. It is shown that the rings over which every cyclic module is FI-mono-retractable are simple Noetherian -ring with zero socle or Artinian semisimple. The last section of the paper is devoted to the endomorphism rings of FI-retractable modules.
Let be a commutative semiring with non-zero identity. In this paper, we introduce and study the graph whose vertices are all elements of and two distinct vertices and are adjacent if and only if the product of the co-ideals generated by and is . Also, we study the interplay between the graph-theoretic properties of this graph and some algebraic properties of semirings. Finally, we present some relationships between the zero-divisor graph and .
Let be a ring with identity and be a unitary left -module. The co-intersection graph of proper submodules of , denoted by , is an undirected simple graph whose vertex set is a set of all nontrivial submodules of and two distinct vertices and are adjacent if and only if . We study the connectivity, the core and the clique number of . Also, we provide some conditions on the module , under which the clique number of is infinite and is a planar graph. Moreover, we give several...
Let be a module and be a class of modules in which is closed under isomorphisms and submodules. As a generalization of essential submodules Özcan in [8] defines a -essential submodule provided it has a non-zero intersection with any non-zero submodule in . We define and investigate -singular modules. We also introduce -extending and weakly -extending modules and mainly study weakly -extending modules. We give some characterizations of -co-H-rings by weakly -extending modules. Let ...
Let be a ring and let be an -module with . Consider the preradical for the category of right -modules Mod- introduced by Y. Talebi and N. Vanaja in 2002 and defined by is small in its injective hull. The module is called quasi-t-dual Baer if is a direct summand of for every two-sided ideal of , where . In this paper, we show that is quasi-t-dual Baer if and only if is a direct summand of and is a quasi-dual Baer module. It is also shown that any direct summand of a...
Download Results (CSV)