Currently displaying 1 – 5 of 5

Showing per page

Order by Relevance | Title | Year of publication

On FI-mono-retractable modules

Marziyeh AtashkarYahya Talebi — 2022

Commentationes Mathematicae Universitatis Carolinae

We introduce the notion of FI-mono-retractable modules which is a generalization of compressible modules. We investigate the properties of such modules. It is shown that the rings over which every cyclic module is FI-mono-retractable are simple Noetherian V -ring with zero socle or Artinian semisimple. The last section of the paper is devoted to the endomorphism rings of FI-retractable modules.

On graph associated to co-ideals of commutative semirings

Yahya TalebiAtefeh Darzi — 2017

Commentationes Mathematicae Universitatis Carolinae

Let R be a commutative semiring with non-zero identity. In this paper, we introduce and study the graph Ω ( R ) whose vertices are all elements of R and two distinct vertices x and y are adjacent if and only if the product of the co-ideals generated by x and y is R . Also, we study the interplay between the graph-theoretic properties of this graph and some algebraic properties of semirings. Finally, we present some relationships between the zero-divisor graph Γ ( R ) and Ω ( R ) .

Some results on the co-intersection graph of submodules of a module

Lotf Ali MahdaviYahya Talebi — 2018

Commentationes Mathematicae Universitatis Carolinae

Let R be a ring with identity and M be a unitary left R -module. The co-intersection graph of proper submodules of M , denoted by Ω ( M ) , is an undirected simple graph whose vertex set V ( Ω ) is a set of all nontrivial submodules of M and two distinct vertices N and K are adjacent if and only if N + K M . We study the connectivity, the core and the clique number of Ω ( M ) . Also, we provide some conditions on the module M , under which the clique number of Ω ( M ) is infinite and Ω ( M ) is a planar graph. Moreover, we give several...

On μ -singular and μ -extending modules

Yahya TalebiAli Reza Moniri Hamzekolaee — 2012

Archivum Mathematicum

Let M be a module and μ be a class of modules in Mod - R which is closed under isomorphisms and submodules. As a generalization of essential submodules Özcan in [8] defines a μ -essential submodule provided it has a non-zero intersection with any non-zero submodule in μ . We define and investigate μ -singular modules. We also introduce μ -extending and weakly μ -extending modules and mainly study weakly μ -extending modules. We give some characterizations of μ -co-H-rings by weakly μ -extending modules. Let R ...

Some results on quasi-t-dual Baer modules

Rachid TribakYahya TalebiMehrab Hosseinpour — 2023

Commentationes Mathematicae Universitatis Carolinae

Let R be a ring and let M be an R -module with S = End R ( M ) . Consider the preradical Z ¯ for the category of right R -modules Mod- R introduced by Y. Talebi and N. Vanaja in 2002 and defined by Z ¯ ( M ) = { U M : M / U is small in its injective hull } . The module M is called quasi-t-dual Baer if ϕ ϕ ( Z ¯ 2 ( M ) ) is a direct summand of M for every two-sided ideal of S , where Z ¯ 2 ( M ) = Z ¯ ( Z ¯ ( M ) ) . In this paper, we show that M is quasi-t-dual Baer if and only if Z ¯ 2 ( M ) is a direct summand of M and Z ¯ 2 ( M ) is a quasi-dual Baer module. It is also shown that any direct summand of a...

Page 1

Download Results (CSV)